簡易檢索 / 詳目顯示

研究生: 鍾昇翰
Sheng-Han Chung
論文名稱: 渦流管性能最佳化的數值與實驗之整合研究
An Integrated Numerical and Experimental Study on Performance Optimization of Vortex Tube
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 楊旭光
Shiuh-Kuang Yang
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 191
中文關鍵詞: 渦流管流場模擬能源效率田口法分析無因次分析
外文關鍵詞: Vortex Tube, Thermal/Flow Simulation, Energy Efficiency, Taguchi Method, Dimensionless Performance Relations
相關次數: 點閱:342下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

渦流管為安裝方便之小體積冷卻組件,不須使用冷媒及電源即可將壓縮空氣分離為冷與熱兩股氣流,因此適用於如機械加工之局部冷卻需求;本研究結合數值模擬、3D列印製作、幾何參數分析執行渦流管的冷卻性能優化,接著製作最佳化模型實體模型供測試,並量測驗證優化渦流管之性能。首先選定渦流管參考模型進行數值流場模擬,觀察其內部溫度與壓力分佈並計算其性能參數,包括空氣消耗流率、冷端流率與溫度、及能源效率;接著使用田口法分析各幾何參數對渦流管性能之貢獻度,考量參數包括冷端管徑、入口面積、及渦流管長與管徑,並依貢獻度系統化地分析其對性能之影響,進而完成性能最佳化之渦流管設計。為確認渦流管數值模擬之可信度,利用3D列印製作實體模型以供進行其性能量測,並將此實驗數據與模擬預估結果交互比對,以驗證此數值所得之渦流管最佳化結果。
數值與實驗之數據比對結果顯示,空氣消耗量差異約在5%內,而冷、熱端溫度差異值也都在3°C之內,可見本研究之數值模擬有一定的可信度。數值分析的結果顯示,最佳化模型於各操作壓力的空氣消耗流率皆遠低於原始模型,而冷端流率除不適用的低操作壓力外,皆能產生相同甚至更高之流量,這代表消耗較少能源便可獲得更高的冷卻性能。在操作壓力60 psig時,其冷端溫度由6.9°C降至5.5°C,且能源效率由0.0491提升至0.0697(41.9%);而操作壓力80 psig時,冷端溫度由6.6°C降至6.4°C,能源效率由0.0485提升至0.0698(43.9%),在兩個常使用操作點之各項性能皆大幅提升,清楚呈現出最佳化後的性能改善結果。最後藉由無因次分析推導渦流管性能對應的無因次函數式,接著將上述模擬所得資料,據以找出正確之無因次關係式;此關係式可用於設計出不同尺寸的渦流管,並可輕易計算出其預估的冷端流率與溫度,可供作為渦流管重要且方便的設計工具。


Vortex tube (VT) is a small mechanical device with no moving part for separating the high-pressure airflow into hot and cold streams without using refrigerant and power input. Due to the features of simple configuration, easy installation, and free maintenance, it becomes the perfect localized cooling choice for machining process, and the topic of this thesis. This integrated CFD, mockup fabrication, and experiment research aims to optimize the cooling performance of VT by analyzing key geometric parameters systematically. First, referred to previous researches, a VT model is constructed and used to execute numerical calculation for yielding its thermal/velocity distributions, flow patterns, and performance variables, mainly including the compressed air consumption, the temperature and flow rate at cold stream outlet, and the energy efficiency. In addition, Taguchi method is applied to evaluate the corresponding performance contribution of important parameters, which include the inlet area of nozzle, the cold-outlet diameter, the dimension of main tube. It is found that the dominant parameters are the cold-exit diameter and the VT length. Accordingly, a comprehensive parameter analysis is carried out within the framework of CFD codes Fluent to identify the corresponding performance influence of each variable, which can be used to attain the design guideline and the optimized model of vortex tube.
Afterward, mockup of the optimum VT is manufactured via the 3D printing technology for measuring its performance characteristics. As a result, an acceptable 5% air consumption and 3℃ temperature differences between test and CFD outcomes are recorded to validate the reliability of numerical model. Generally, CFD results show that the optimized model has a much lower air consumption than that of the original VT while the cold flow rate is maintained at the same or higher level for the practical operating pressures. It follows that a superior cooling performance can be achieved with a smaller energy consumption. Furthermore, significant performance improvements of this optimized VT are obtained at the frequently-used operating points. At operating pressure of 60 psig, the cold-end temperature drops from 6.9°C to 5.5°C while energy efficiency increases from 0.0491 to 0.0697 (i.e., 41.9% increase). For the higher operating pressure 80 psig, the cold-end temperature decreases from 6.6°C to 6.4°C while energy efficiency enlarges from 0.0485 to 0.0698 (i.e., 43.9% growth). Moreover, to generalize this optimal research, the dimensional analysis is applied on the vortex tube to generate the corresponding nondimensional performance parameters. And, with the aids of CFD results, their functional relations are determined with an accurate 5% deviation. In conclusions, the accomplishment of this work provides a systematic design scheme for constructing the optimized vortex tube to meet the specific requirements in the practical applications. Also, the nondimensional formular offers a ready-to-use design tool for creating different sizes vortex tube in a convenient manner.

摘 要 I Abstract III 致 謝 V 目 錄 VI 圖索引 XI 表索引 XV 符號索引 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 能量分離理論 4 1.2.2 數值方法與幾何參數 7 1.2.3 田口法應用 11 1.3 研究動機與流程 13 第二章 渦流管與相關理論介紹 18 2.1 渦流管之介紹 18 2.1.1渦流管之組成 18 2.1.2渦流管之運作方式 22 2.1.3渦流管之應用 24 2.2 冷熱分離之理論分析 28 2.2.1 壓力梯度 28 2.2.2 多循環理論 29 2.3 渦流管之特性定義 35 第三章 物理模型和數值方法 39 3.1 渦流管模型之建立與介紹 41 3.2 數值模型之網格建立 45 3.3 統御方程式與紊流模型 50 3.3.1 統御方程式 52 3.3.2 紊流模型 53 3.3.3 紊流模型 k-ɛ Model 54 3.4 數值計算方法 56 3.4.1 離散化方程式 56 3.4.2 上風差分法 58 3.4.3 耦合式求解法及求解流程 59 第四章 原始渦流管模擬與田口法分析 62 4.1 原始渦流管之模擬分析 63 4.1.1 邊界條件設定 64 4.1.2 性能數據之分析 65 4.1.3 壓力、溫度和馬赫數之分佈 69 4.1.4 歸納性能缺失與提出改善方案 75 4.2 田口法分析 76 4.2.1 控制因子與直交表選用 77 4.2.2 訊噪比分析(S/N比) 82 4.2.3 變異數分析(ANOVA) 87 第五章 渦流管之參數分析與性能最佳化 89 5.1 冷端出口管徑之影響 90 5.1.1 性能數據之分析 91 5.1.2 壓力與溫度分佈之討論 95 5.2 入口面積之影響 102 5.2.1 性能數據之分析 103 5.2.2 壓力與溫度分佈之討論 109 5.3 渦流主管之管徑的影響 114 5.3.1 性能數據之分析 115 5.3.2 壓力與溫度分佈之討論 118 5.4 渦流主管之長度的影響 124 5.4.1 性能數據之分析 124 5.4.2 壓力與溫度分佈之討論 129 5.5 原始與最佳化模型之性能比較 134 5.6 熱端出口尺寸之影響 137 第六章 渦流管之性能實測分析 143 6.1 渦流管之性能實測設備 143 6.2 渦流管之性能實測規劃 152 6.3 最佳化渦流管之實測與模擬比較 158 第七章 無因次分析與性能公式 163 7.1 白金漢π定理與無因次參數 163 7.2 無因次參數之函數簡化 166 7.3 渦流管性能的無因次關係式之決定 168 7.3.1 性能與冷端管徑之無因次關係式 169 7.3.2 性能與渦流管長之無因次關係式 172 7.4 無因次參數之應用 176 第八章 結論與建議 178 8.1 結論 178 8.2 建議 183 參考文獻 187

[1] M. Yilmaz, M. Kaya, S. Karagoz and S. Erdogan, “A Review on Design Criteria for Vortex Vubes,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 613-632, 2009.
[2] G. J. Ranque, “Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot and Cold Air,” Le Journal De Physique et le Radium (Paris), Vol. 4, pp. 112-114, 1933.
[3] R. Hilsch, “The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process,” Review of Scientific Instruments, Vol. 18, pp. 108-113, 1947.
[4] O. V. Kazantseva, S. A. Piralishvili, and A. A. Fuzeeva, “Numerical Simulation of Swirling Flows in Vortex Tubes,” High Temperature, Vol. 43, pp. 608-613, 2005.
[5] U. Behera, P. J. Paul, K. Dinesh, and S. Jacob, “Numerical Investigations on Flow Behaviour and Energy Separation in Ranque–Hilsch Vortex Tube,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 6077-6089, 2008.
[6] R. T. Balmer, “Pressure-Driven Ranque-Hilsch Temperature Separation in Liquids,” Journal of Fluids Engineering, Vol. 110, pp. 191-164, 1988.
[7] C. D. Fulton, “Ranque’s Tube,” ASHRAE Refrigeration, pp. 473-479, 1950.
[8] M. Kurosake, “Acoustic Streaming in Swirling Flow and the Ranque-Hilsch (Vortex-Tube) Effect,” Journal of Fluid Mechanics, Vol. 124, pp. 139-172, 1982.
[9] B. K. Ahlborn, “The Vortex Tube as a Classic Thermodynamic Refrigeration Cycle,” Journal of Applies Physics, Vol. 88, pp. 36-45, 2000.
[10] U. Behera, P. J. Paul, S. Kasthurirengan, R. Karunanithi, S. N. Ram, K. Dinesh, and S. Jacob, “CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque–Hilsch Vortex Tube,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 1961-1973, 2005.
[11] Y. Xue, M. Arjomandi, and R. Kelso, “The Working Principle of a Vortex Tube,” International Journal of Refrigeration, Vol. 36, pp. 1730-1740, 2013.
[12] H. M. Skye, G. F. Nellis, and S. A. Klein, “Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube,” International Journal of Refrigeration, Vol. 29, pp. 71-80, 2006.
[13] R. Shamsoddini and A. H. Nezhad, “Numerical Analysis of the Effects of Nozzles Number on the Flow and Power of Cooling of a Vortex Tube,” International Journal of Refrigeration, Vol. 33, pp. 774-782, 2010.
[14] 陳律廷,“渦旋管之冷卻性能分析”,大同大學機械工程研究所碩士論文,2013年。
[15] M. A. Belay, “Large Eddy Simulation Applied on the Analysis of Vortex Tube,” 國立台灣科技大學機械工程學系碩士論文,2014年。
[16] S. T. Abdelghany and H. A. Kandil, “Effect of Geometrical Parameters on the Coefficient of Performance of the Ranque-Hilsch Vortex Tube,” Open Access Library Journal, Vol. 5, pp. 1-17, 2018.
[17] A. Bazgir, M. K. Nikou, and A. Heydari, “Numerical CFD Analysis and Experimental Investigation of the Geometric Performance Parameter Influences on the Counter-Flow Ranque-Hilsch Vortex Tube (C-RHVT) by Using Optimized Turbulence Model,” International Journal of Heat and Mass Transfer Journal, Vol. 55, pp. 2559-2591, 2019.
[18] L. Zangana and R. Barwari, “The Effect of Convergent-Divergent Tube on the Cooling Capacity of Vortex Tube: An Experimental and Numerical Study,” Alexandria Engineering Journal, Vol. 59, pp. 239-246, 2020.
[19] A. M. Pinar, O. Uluer, and V. Kirmaci, “Optimization of Counter Flow Ranque-Hilsch Vortex Tube Performance Using Taguchi Method,” International Journal of Refrigeration, Vol. 32, pp. 1487-1494, 2009.
[20] G. Kumara, G. Padmanabhanb, and B. D. Sarmac, “Optimizing the Temperature of Hot Outlet Air of Vortex Tube Using Taguchi Method,” Procedia Engineering, Vol. 97, pp. 828-836, 2014.
[21] A. Sarifudin, I. Widiastuti, and D. S. Wijayanto, “Parameters Optimization of Tube Type, Pressure, and Mass Fraction on Vortex Tube Performance,” International Journal of Heat and Technology, Vol. 37, pp. 597-604, 2019.
[22] H. Thakare, A. Parekh, A. Upletawala, and B. Behede, “Application of Mixed Level Design of Taguchi Method to Counter Flow Vortex Tube,” Materials Today Peoceedings, Vol. 57, pp. 2242-2249, 2022.
[23] Streamtek, “Best Vortex Tube from Streamtek,” https://stream-tek.com/vortex-tube/, 2022.
[24] Vortec, “ITW Personal Air Conditioner,” https://www.vortec.com/vortec-cooling-vests-2, 2022.
[25] Y. Xue, M. Arjomandi, and R. Kelso, “A Critical Review of Temperature Separation in a Vortex Tube,” Experimental Thermal and Fluid Science, Vol. 34, pp. 1367-1374, 2010.
[26] E. Launder and D. B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
[27] 李輝煌,“田口方法-品質設計的原理與實務”,高立圖書有限公司,2009年。
[28] S. Eiamsa-ard and P. Promvonge, “Review of Rangue-Hilsch Effects in Vortex Tubes,” Renewable and Sustainable Energy Reviews, Vol. 12, pp. 1822-1842, 2008.
[29] Z. Hu, R. Li, X. Yang, M. Yang, R. Day, and H. Wu, “Energy Separation for Rangue-Hilsch Vortex Tube: A Short Review,” Thermal Science and Engineering Progress, Vol. 19, pp. 25-31, 2020.
[30] 陳毅,“一段式噴射型真空產生器之模擬分析與性能優化”,國立台灣科技大學機械工程學系碩士論文,2021年。
[31] 陳品勳,“二段式真空產生器之參數分析與優化應用”, 國立台灣科技大學機械工程學系碩士論文,2022年。
[32] 俞木凱,“探討渦流管能量傳遞與提升冷卻效率之研究”,國立台北科技大學車輛工程系碩士論文,2013年。

無法下載圖示 全文公開日期 2026/01/30 (校內網路)
全文公開日期 2028/01/30 (校外網路)
全文公開日期 2028/01/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE