簡易檢索 / 詳目顯示

研究生: 諾菲
Novi Irmania
論文名稱: 多功能環保量子點作為靶向雙成像和光動力癌症治療平台
Multifunctional Eco-friendly Quantum Dots as a targeted dual imaging and photodynamic cancer therapy platform
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 張家耀
Jia-Yaw Chang
蔡伸隆
Shen-Long Tsai
麥富德
Fu-Der Mai
黃志清
Chih-Ching Huang
Vijayakameswara
Vijayakameswara Rao Neralla
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 182
中文關鍵詞: carbon quantum dotsMn dopantMRIphotodynamic therapyphotoluminescence
外文關鍵詞: carbon quantum dots, Mn dopant, MRI, photodynamic therapy, photoluminescence
相關次數: 點閱:224下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在這項工作中,使用廢棄綠茶通過水熱法合成了錳摻雜的碳量子點(Mn-CQDs)。引入Mn2+摻雜劑以賦予磁共振能力。在優化實驗條件後,具有磁性之熒光Mn-CQD表現出與激發有關的藍色發射。 Mn-CQD上的豐富官能團不僅可以促進水溶性,還可以直接用胺基進行官能化。然後將胺尾端的Mn-CQDs與葉酸(FA)和二氫卟酚e6(Ce6)偶聯,以獲得Mn-CQDs@FA/ Ce6具有磁性熒光光動力療法(PDT)藥劑。使用三種不同細胞的體外研究表明,Mn-CQDs@FA/ Ce6可以特異性靶向過度表達的葉酸受體人類上皮癌細胞系(HeLa)癌細胞。此外,Mn-CQDs@FA/ Ce6增強了r2 / r1比為5.77的磁共振成像(MRI)信號。有利地,通過共聚焦顯微鏡證實,通過使用Mn-CQDs@FA傳遞系統,活性Ce6可以到達細胞內部,同時可以保留其紅色熒光(FL)和活性氧種類的產生。體外細胞生存力研究證實了Mn-CQDs@FA/ Ce6納米雜化物的生物相容性,在高達500 ppm時無明顯毒性,而5分鐘照射(671 nm,1 W cm-2)的PDT處理可有效殺死90%以上的細胞。輕觸發的Mn-CQDs@FA/ Ce6多功能雜化物可以用作雙模式FL/ MRI探針,並且可以作為有效的PDT劑來遠程檢測和根除癌細胞。
對於第二項工作,我們展示了一種簡單快速的方法,該方法通過使用穀胱甘肽(GSH)作為穩定劑輔助的微波來開發具有ZnS鈍化層(MnCuInSe/ ZnS)的錳摻雜CuInSe量子點(QD)的水合成。 MnCuInSe/ ZnS核殼量子點結合了磁共振成像(MRI),依賴於激發的紅色發射和活性氧自由基生成功能,其中Mn2+摻雜劑的優化決定了主導功能。根據磁共振成像(MRI)信號,MnCuInSe/ ZnS的r2 / r1比值為9.99。這表明該量子點作為負和正對比劑的潛在能力。根據對Hela、B16和HepG2細胞給予MnCuInSe/ ZnS後的體外測試,它顯示出對這些細胞較低的細胞毒性。此外,量子點可以有效地產生單態氧用於癌症的光動力療法(PDT)。通過使用5分鐘激光照射(671 nm,1 W cm-2)檢查了PDT處理,也顯示出良好的遠程癌細胞治療效果。通過共聚焦顯微鏡檢查了體外熒光成像和量子點的細胞內在化。此外,MnCuInSe/ ZnS在不同的pH值下表現出高度的穩定性,適用於生物醫學應用。因此,這項研究代表了CQD的生物醫學用途,並提供了多用途的納米治療應用。


Quantum Dots are one of the initial nanotechnologies to be integrated with biological materials and powerfully apply in clinical products. They indicate particular luminescence features, high light stability, and broad absorption spectra. In this work, manganese-doped carbon quantum dots (Mn-CQDs) have been synthesized using waste green tea through a one-pot hydrothermal method. The Mn2+ dopants were introduced to impart magnetic resonance capability. Upon optimization of the experimental conditions, magnetofluorescent Mn-CQDs exhibit an excitation-dependent blue emission. The abundant functional groups on Mn-CQDs promote water solubility and allow straightforward functionalization with amine groups. The amine-terminated Mn-CQDs were then subsequently conjugated to folic acid (FA) and chlorin e6 (Ce6) to obtain the Mn-CQDs@FA/Ce6 magnetofluorescent photodynamic therapy (PDT) agent. In vitro studies using three different cells indicated specific targeting of Mn-CQDs@FA/Ce6 to the overexpressing folate receptor human epithelial carcinoma cell line (HeLa) cancer cells. Furthermore, Mn-CQDs@FA/Ce6 enhanced magnetic resonance imaging (MRI) signal with an r2/r1 ratio of 5.77. Favorably, by using the Mn-CQDs@FA delivery system, active Ce6 can reach the cellular interior while its red fluorescence (FL) and reactive oxygen species generation can be retained, as has been verified by confocal microscopy. In vitro cell viability studies verified the biocompatibility of Mn-CQDs@FA/Ce6 nanohybrid with no significant toxicity up to 500 ppm while PDT treatment with 5 min irradiation (671 nm, 1 W cm−2) was effective in killing >90% of cells. The light-triggered Mn-CQDs@FA/Ce6 multifunctional hybrid can serve as a dual-modal FL/MRI probe and as an efficient PDT agent to detect and eradicate cancer cells remotely.
In the second part of this thesis, we demonstrated manganese (Mn)-doped CuInSe quantum dots (QDs) with a ZnS passivation layer (MnCuInSe/ZnS) have been synthesized via a one-pot microwave-assisted hydrothermal reaction using glutathione (GSH) as a stabilizer. The MnCuInSe/ZnS core-shell QDs combines magnetic resonance imaging (MRI), excitation-dependent red emission, and reactive oxygen radical generation functions, in which regulation of Mn2+ incorporation leads to synergistic imaging and therapeutic modalities. The MnCuInSe/ZnS QDs exhibit high colloidal and photochemical stability in simulated media and at different pH values. An r2/r1 ratio of 9.99 was calculated from MRI studies suggesting their potential application as dual-modal imaging agents. Based on in vitro tests on Hela, B16, and HepG2 cell lines, it is apparent that MnCuInSe/ZnS QDs impose no significant cytotoxicity in the dark, while they can efficiently generate singlet oxygen radicals for photodynamic therapy (PDT) of cancers, killing more than 80% of B16 cells within 5 min of laser irradiation (671 nm, 1 W cm-2). Furthermore, in vitro fluorescence imaging and cellular internalization of QDs are examined to visualize cellular uptake and in situ ROS generation. Therefore, this research exemplifies a new set of multifunctional chalcogenide QDs for theranostic applications.

Recommendation letter ii Abstract in chinese iii Abstract in english v Acknowledgments vii Contents viii List of figures xii List of tables xvii List of abbreviation ix Chapter 1. Introduction 1 1.1 General introduction 2 1.2 Objective of study 6 1.3 Structure of the dissertation 6 Chapter 2. Literature review 8 2.1 Nanoparticles 9 2.2 Semiconductor quantum dots 10 2.3 The quantum confinement, optical properties, and core/shell structure of QDs 12 2.4 Synthesis of QDs 19 2.4.1 Nucleation and growth 21 2.4.2 Hot injection method 25 2.4.3 Heat-up method 28 2.4.4 Solvothermal approach 31 2.4.5 Hydrothermal approach 33 2.4.6 Microwave irradiation approach 35 2.5. Folate receptor targeting agents 38 2.6 QDs biomedical applications 42 2.6.1 Optical imaging 42 2.6.2 Magnetic resonance imaging (MRI) 44 2.6.3 Drug delivery 46 2.6.4 Photo‑dynamic therapy (PDT) and Photo‑thermal (PTT) therapy 59 Chapter 3. Manganese-doped green tea-derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform 48 3.1 Introduction 52 3.2 Experimental methods 53 3.2.1 Materials 55 3.2.2 Synthesis of Mn-CQD 56 3.2.3 Preparation of Mn-CQDs@FA/Ce6 56 3.2.4 Characterization 57 3.2.5 Cell structure and viability evaluation 58 3.2.6 In vitro photodynamic cancer cells’ ablation 59 3.2.7 Cell imaging 60 3.3 Results 60 3.3.1 Synthesis of Mn-CQDs 60 3.3.2 Preparation of Mn-CQDs@FA/Ce6 64 3.3.3 Photoluminescence characteristics and ROS generation of Mn-CQDs@FA/Ce6 conjugates 66 3.3.4 Mn-CQDs as MRI contrast agents 69 3.3.5 In vitro cellular uptake and therapeutic effect 72 3.4 Discussion 75 3.5 Summary 77 Chapter 4. Multifunctional MnCuInSe/ZnS quantum dots for bioimaging and photodynamic therapy 79 4.1 Introduction 80 4.2 Experimental methods 83 4.2.1 Materials 83 4.2.2 Synthesis of the CuInS, CuInSe, MnCuInSe core and CuInS/ZnS, CuInSe/ZnS and MnCuInSe/ZnS core/shell carbon quantum dots 84 4.2.3 Characterization 85 4.2.4 Optical and photoluminescence properties of MnCuInSe/ZnS assay 85 4.2.5 Photoactivity assessment of MnCuInSe/ZnS 86 4.2.6 In Vitro MR 86 4.2.7 Cell culture and in vitro cytotoxicity evaluation 87 4.2.8 Cell imaging 88 4.3. Results and discussion 88 4.3.1. Synthesis and characterization of MnCuInSe/ZnS 88 4.3.2 Optical and photoluminescence properties of MnCuInSe/ZnS 90 4.3.3 Stability of MnCuInSe/ZnS QDs colloidal solution 94 4.3.4 ROS generation of MnCuInSe/ZnS 97 4.3.5 Magnetic resonance imaging 98 4.3.6 In vitro cellular uptake and therapeutic effect 101 4.3.7 Confocal imaging 102 4.4. Summary 105 Chapter 5. Conclusions 106 5.1 Conclusions 107 5.2 Future outlooks 109 References 110 Appendix 134

[1] Ana M, Flavia M, Gabriel N. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 2007; 608:1-22.
[2] Alex D, Waldman, Jill M, Fritz, Michael J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology volume 20: 651–668 (2020)
[3] Bo Y, Heng C, Weiming X, James, Robert J. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010 October; 27(7): 286–298
[4] Genevieve H, Shannon B, Sarah Heerboth, Karolina L, Mckenna L, Nicole S, and Sibaji S. Drug Resistance in Cancer: An Overview. Cancers (Basel). 2014 Sep; 6(3): 1769–1792.
[5] Cara P, Steven D, Targum, John E. Psychol, Cognitive Impairment Associated with Cancer: A Brief Review. Innov Clin Neurosci. 2017;15(1–2):36–44.
[6] Ibrahim K, Khan K, Idress K. Nanoparticles: Properties, applications, and toxicities. Arabian Journal of Chemistry. 2019 Nov, 12 (7): 908-931.
[7] Min F, Peng C, Pang D, Yan L. Quantum Dots for Cancer Research: Current Status, Remaining Issues, and Future Perspectives. Cancer Biol Med. 2012 Sep; 9(3): 151–163.
[8] Shizhong W, Benjamin R, Susan M, Angelique Y. Core/Shell Quantum Dots with High Relaxivity and Photoluminescence for Multimodality Imaging. J. Am. Chem. Soc. 2007, 129, 13, 3848–3856.
[9] Sandra J, Jerry C, Oleg K, James R, Ian D. Biocompatible Quantum Dots for Biological Applications. Chem Biol. 2011 Jan 28; 18(1): 10–24.
[10] Lihong B, Baozhong S, Zhen C. Fluorescent imaging of cancerous tissues for targeted surgery. Adv Drug Deliv Rev. 2014 Sep 30; 0: 21–38.
[11] Margaret C, Joshua C, Shashi B, and Allison M. Sensing with Photoluminescent Semiconductor Quantum Dots. Methods Appl Fluoresc. 2019 Jan 24; 7(1): 012005.
[12] Menezes M, Das S, Minn I, Emdad L, Wang X, Sarkar D, Pomper M, Fisher P. Detecting Tumor Metastases: The Road to Therapy Starts Here. Adv Cancer Res. 2016; 132: 1–44.
[13] Nan Chena, Yao He, Yuanyuan Su, Xiaoming Li, Qing Huang, Haifeng Wang, Xiangzhi Zhang, Renzhong Tai, Chunhai Fan. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012 Feb; 33(5):1238-44.
[14] V.G.Reshma, K.S.Rajeev, K.Manoj, P.V.Mohanan. Water dispersible ZnSe/ZnS quantum dots: Assessment of cellular integration, toxicity, and bio-distribution. Journal of Photochemistry & Photobiology, B: Biology 222 (2021) 1122752.
[15] Grant L. Zwicke, G. Ali Mansoori, Constance J. Jeffery. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012; 3: 10.3402/nano.v3i0.18496.
[16] Cristian T Matea, Teodora Mocan, Flaviu Tabaran, Teodora Pop, Ofelia Mosteanu, Cosmin Puia, Cornel Iancu,Lucian Mocan. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017; 12: 5421–5431.
[17] Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, et al. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl Catal Environ 2015;163:40–9.
[18] Bajorowicz B, Cybula A, Winiarski MJ, Klimczuk T, Zaleska A. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites. Molecules 2014;19(9):15339–60.
[19] Aldana J, Wang YA, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 2001;123(36):8844–50.
[20] Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials 2007;28(31):4717–32.
[21] Rajabi HR, Farsi M. Quantumdot based photocatalytic decolorization as an efficient and green strategy for the removal of anionic dye. Mater Sci Semicond Process 2015;31:478–86.
[22] Sarac FE, Yilmaz C, Acar FY, Unal U. CdTe quantum dot sensitized hexanoate nanoscrolls and their photoelectrochemical properties. RSC Adv 2012;2(27): 10182–4.
[23] Bawendi MG, Steigerwald ML, Brus LE. The quantum mechanics of larger semiconductor clusters (" quantum dots"). Annu Rev Phys Chem 1990;41(1): 477–96.
[24] Ma C, Zhou M, Wu D, Feng M, Liu X, Huo P, et al. One-step hydrothermal synthesis of cobalt and potassium codoped CdSe quantum dots with high visible-light photocatalytic activity. CrstEngComm 2015;17(7):1701–9.
[25] Geszke-MoritzM, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification, and properties. Mater Sci Eng C 2013;33(3):1008–21.
[26] Bunsho O. Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 2008;37:216–30.
[27] ShamsipurM, Rajabi HR. Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim Acta A Mol Biomol Spectrosc 2014;122:260–7.
[28] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N., 2010. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110. http://dx.doi.org/10.1021/cr900197g, pp. 2574–2574.
[29] Shin, W.-K., Cho, J., Kannan, A.G., Lee, Y.-S., Kim, D.-W., 2016. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci. Rep. 6, 26332. http://dx.doi.org/10.1038/srep26332.
[30] Biju, V, Itoh, T, Ishikawa, M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society reviews. 39 (2010) 3031-3056.
[31] Reiss, P, Protiere, M, Li, L. Core/Shell Semiconductor Nanocrystals. Small 5 (2009) 154-168.
[32] Beata Bajorowicz 1, Marek P Kobylański 1, Anna Gołąbiewska 1, Joanna Nadolna 1, Adriana Zaleska-Medynska 1, Anna Malankowska. Quantum dot-decorated semiconductor micro-and nanoparticles: A review of their synthesis, characterization, and application in photocatalysis. Advances in Colloid and Interface Science 256 (2018) 352–372.
[33] Chuang, P.H., Lin, C.C, Liu, R.S. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Applied Materials & interfaces 6 (2014). 15379-15387.
[34] Zhong, H, Zhou, Y., Ye, M, He, Y, Ye, J. Ye, C, He, C, Yang, C, Li, Y. Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals. Chemistry of Materials 20 (2008) 6434-6443.
[35] Uehara, M., Watanabe, K., Tajiri, Y., Nakamura, H., Maeda, H. Synthesis of CuInS2CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. The Journal of chemical physics 129 (2008) 134709.
[36] Deng, D., Qu, L., Zhang, J., Ma, Y., Gu, Y. Quaternary Zn–Ag–In–Se Quantum Dots for Biomedical Optical Imaging of RGD-Modified Micelles. ACS Applied Materials Interfaces 5 (2013) 10858-10865.
[37] Deng, D., Qu, L., Gu, Y. Near-infrared broadly emissive AgInSe2/ZnS quantum dots for biomedical optical imaging. Journal of Materials Chemistry C 2 (2014) 7077-7085.
[38] Smith, A., Mohs, A, Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature nanotechnology 4 (2009) 56-63.
[39] Xianglong Huang, Xin Tong, Zhiming Wang. Rational design of colloidal core/shell quantum dots for optoelectronic applications. Journal of Electronic Science and Technology 18 (2020) 100018.
[40] Kagan, C., Lifshitz, E., Sargent, H., Talapin, D. Building devices from colloidal quantum dots. Science, 353 (6302) (Aug. 2016). 5523:19.
[41] Dai, X., Zhang, Z., Jin, Y. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515 (7525) (Oct. 2014), 96-99.
[42] Shirasaki, Y., Supran, G., Bawendi, M., Bulović, Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon., 7 (Jan. 2013), 13-23.
[43] Litvin, A., Martynenko, I., Purcell-Milton, F., Baranov, A., Fedorov, V., Gun’ko, Y. Colloidal quantum dots for optoelectronics. J. Mater. Chem., 5 (26) (May 2017), 13252-13275.
[44] Zhao, H., Rosei, F. Colloidal quantum dots for solar technologies. Inside Chem., 3 (2) (Aug. 2017), 229-258.
[45] Navarro-Pardo, F., Zhao, H., Wang, Z., Rosei, F. Structure/property relations in “Giant” semiconductor nanocrystals: opportunities in photonics and electronics. Acc. Chem. Res., 51 (3) (Dec. 2018), 609-618.
[46] Ghosh Chaudhuri, R., Paria, S.Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 112 (4) (Dec. 2012), pp. 2373-2433
[47] Uehara, M., Watanabe, K., Tajiri, Y., Nakamura, H., Maeda, H. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. The Journal of Chemical Physics 129 (2008)134709.
[48] Li, L., Daou, T., Texier, I., Kim T., Liem, N., Reiss, P. Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging. Chemistry of Materials 21 (2009) 2422-2429.
[49] Xie, R., Rutherford, M., Peng, X. Formation of High-Quality I−III−VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. Journal of the American chemical society 131 (2009) 5691-5697.
[50] Bachmann, V., Ronda, C., Meijerin, A. Temperature Quenching of Yellow Ce3+ Luminescence in YAG: Ce. Chemistry of Materials 21 (2009) 2077.
[51] Lin, L., Rong, M., Luo, F., Chen, D., Wang, Y., Chen, X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications, TrAC Trends Anal. Chem. 54 (2014) 83–102.
[52] Zhou, X., Guo, S., Zhang, J. solution-processable graphene quantum dots, ChemPhysChem 14 (12) (2013) 2627–2640.
[53] Bacon, M., Bradley, Nann, T. Graphene quantum dots, Particle & Particle. Systems Characterization 31 (4) (2014) 415–428.
[54] Baker, S., Baker, G., Luminescent carbon nanodots: emergent nano lights, Angew. Chem. Int. Ed. 49 (38) (2010) 6726–6744.
[55] Shen, J., Zhu, Y., Yang, X., Li, C. Graphene quantum dots: emergent nano lights for bioimaging, sensors, catalysis, and photovoltaic devices, Chem. Commun. 48 (31) (2012) 3686–3699.
[56] Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C., Yang, X., Lee, S. Water-soluble fluorescent carbon quantum dots and photocatalyst design, Angew. Chem. Int. Ed. 49 (26) (2010) 4430–4434.
[57] Zhang, H., Ming, H., Lian, S., Huang, H., Li, H., Zhang, L., Liu, Y., Kang, Z., Lee, S. Fe2 O 3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light, Dalton Trans. 40 (41) (2011) 10822–10825.
[58] Ming, H., Ma, Z., Liu, Y., Pan, K., Yu, H., Wang, F., Kang, Z. Large scale electrochemical synthesis of high-quality carbon nanodots and their photocatalytic property, Dalton Trans. 41 (31) (2012) 9526–9531.
[59] Zhang, H., Huang, H., Ming, H., Li, H., Zhang, L., Liu, Y., Kang, Z. Carbon quantum dots/Ag 3 PO 4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light, J. Mater. Chem. 2 (21) (2012) 10501–10506.
[60] Chan, W., Maxwell, D., Gao, X., Bailey, R., Han, M., Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 13 (1) (2002) 40–46.
[61] Gao, M., Liu, C., Wu, L., Zeng, Q., Yang, X., Wu, W., Li, Y., Huang, C. A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties, Chem. Commun.49 (73) (2013) 8015–8017.
[62] Lim, S., Shen, W., Gao, Z. Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (1) (2015) 362–381.
[63] Wang, Y., Hu, A. Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C 2 (34) (2014) 6921–6939.
[64] Sun, Y., Zhou, B., Lin, Y., Wang, W., Fernando, K., Pathak, P., Meziani, M., Harruff, B., Wang, X., Wang, X. Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc. 128 (24) (2006) 7756–7757.
[65] Dan, P., An, L., Sun Z, Hou W, Yang Y, Yang Z, Lu Y. Synthesis of Cu−In−S Ternary Nanocrystals with Tunable Structure and Composition. Journal of American chemical society 130 (2008) 5620-5621.
[66] Raffaelle R, Castro S, Hepp, A., Bailey, S. Progress in photovoltaics: research and applications 10 (2002) 433-439.
[67] Liu, H., Zhang, H., Qiao, Y. Su, X. One-pot synthesis of ternary CuInS2quantum dots with near-infrared fluorescence in aqueous solution. RSC Advances 2 (2012) 819-825.
[68] Li, L., Pandey, A., Werder D., Khanal, B., Pietryga, J., Klimov, V. Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission. Journal of the American chemical society 133 (2011) 1176-1179.
[69] Castro, S., Bailey, S., Rafaelle, R., Banger, K., Hepp, A. Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors. Chemistry of Materials 15 (2003) 3142-3147.
[70] Nairn, J., Shapiro, P., Twamly, b., Pounds, T., Von Wandruszka, R. Fletcher T., Williams, M., Wang, C., Norton, M. Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors. Nano letters 6 (2006) 1218-1223.
[71] Xiao Wang, Yongqiang Feng*, Peipei Dong and Jianfeng Huang. A Mini-Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem., 04 October 2019.
[72] Mullin, J. W. In Crystallization; Mullin, J. W., Ed.; Butterworth- Heinemann: Boston, 1997.
[73] Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P. J. Am. Chem. Synthesis of hcp-Co Nanodisks. Soc. 2002, 124 (43), 12874.
[74] Robinson, I.; Zacchini, S.; Tung, L. D.; Maenosono, S.; Thanh, N. T. K. Chem. Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters. Mater. 2009, 21 (13), 3021.
[75] Habraken, W. J. E. M.; Tao, J.; Brylka, L. J.; Friedrich, H.; Bertinetti, L.; Schenk, A. S.; Verch, A.; Dmitrovic, V.; Bomans, P. H. H.; Frederik, P. M.; Laven, J.; van der Schoot, P.; Aichmayer, B.; de With, G.; DeYoreo, J. J.; Sommerdijk, N. A. J. M. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013,4, 1507.
[76] Sugimoto, T. Monodispersed Particles; Elsevier: Amsterdam, 2001.
[77] Sugimoto, T. J. Underlying mechanisms in size control of uniform nanoparticles. 2007, 309, 106.
[78] Nguyen T, Maclean, N, Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 15, 7610–7630.
[79] LaMer VK, Dinegar RH. 1950. Theory, Production, and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc.. 72(11):4847-4854.
[80] Murray CB, Kagan CR, Bawendi MG. 2000. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu. Rev. Mater. Sci.. 30(1):545-610.
[81] Peng X, Wickham J, Alivisatos AP. 1998. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: Focusing of Size Distributions. J. Am. Chem. Soc.. 120(21):5343-5344.
[82] Murray CB, Norris DJ, Bawendi MG. 1993. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.. 115(19):8706-8715.
[83] Talapin DV, Lee J, Kovalenko MV, Shevchenko EV. 2010. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev.. 110(1):389-458.
[84] Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH. 2015. Colloidal Quantum Dot Solar Cells. Chem. Rev.. 115(23):12732-12763.
[85] Park J, Kim S-W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. Journal of materials chemistry 21 (2011) 3745-3750.
[86] Chang J.Y, Wang G.C, Cheng, C.Y, Lin W.X, Hsu, J.C. Strategies for photoluminescence enhancement of AgInS2quantum dots and their application as bioimaging probes. Journal of materials chemistry 22 (2012) 10609-10618.
[87] Yang YA, Wu H, Williams KR, Cao YC. 2005. Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection. Angew. Chem. Int. Ed.. 44(41):6712-6715.
[88] Zhong H, Lo S, Mirkovic T, Li Y, Ding Y, Li Y, Scholes G. ACS Nano 4 (2010) 5253-5262.
[89] Zhang W, Zhong X. Facile Synthesis of ZnS−CuInS2-Alloyed Nanocrystals for a Color-Tunable Fluorchrome and Photocatalyst. Inorganic Chemistry 50 (2011) 4065-4072.
[90] Anirudh S., Joydeep D. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology 17: 92 (2019)
[91] Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Karthikeyan, D.; Lee, Y.R. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J. Photochem. Photobiol. B Biol. 2016, 162, 500–510.
[92] Ahmad, M.; Ahmed, E.; Hong, Z.L.; Khalid, N.R.; Ahmed, W.; Elhissi, A. Graphene-Ag/ZnO nanocomposites as high-performance photocatalysts under visible light irradiation. J. Alloy. Compd. 2013, 577, 717–727.
[93] Marlinda, A.R.; Huang, N.M.; Muhamad, M.R.; An’Amt, M.N.; Chang, B.Y.S.; Yusoff, N.; Harrison, I.; Lim, H.N.; Chin, H.; Chia, S.; et al. Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites, Mater. Lett. 2012, 80, 9–12.
[94] Saravanakumar, B.; Mohan, R.; Kim, S.J. Facile synthesis of graphene/ZnO nanocomposites by low-temperature hydrothermal method. Mater. Res. Bull. 2013, 48, 878–883. 56.
[95] Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Karthik, N.; Karthikeyan, D.; Shanmugam, M.; Lee, Y.R. Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A Chem. 2018, 350, 75–85.
[96] Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Shanmugam, M.; Lee, Y.R. Direct solvothermal synthesis of zinc oxide nanoparticle decorated graphene oxide nanocomposite for efficient photodegradation of azo-dyes. J. Photochem. Photobiol. A Chem. 2017, 337, 100–111.
[97] Cao Y, Wang J. One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals. Journal of American chemical society 126 (2004) 14336-14337.
[98] Xia C, Cao L, Liu W, Su G, Gao R, Qu H, Shi L, He G. One-step synthesis of near-infrared emitting and size-tunable CuInS2 semiconductor nanocrystals by adjusting kinetic variables. CrystEngComm 16 (2004) 7469-7477.
[99] Huang W, Tseng C, Chang H, Tuan H, Chiang C, Lyu L, Huang M. Solvothermal Synthesis of Zincblende and Wurtzite CuInS2 Nanocrystals and Their Photovoltaic Application. Langmuir 28 (2012) 8496-8501.
[100] Gong, Y.; Zhao, J.; Wang, H.; Xu, J. CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium-ion batteries. Electrochim. Acta 2018, 292, 895–902.
[101] Wang, C.; Zhang, L.; Huang, H.; Xi, R.; Jiang, D.P.; Zhang, S.H.; Wang, L.J.; Chen, Z.Y.; Pan, G.B. A nanocomposite consisting of ZnO decorated graphene oxide nanoribbons for resistive sensing of NO2 gas at room temperature. Microchim. Acta 2019, 186, 554.
[102] Yao D, Liu H, Dong C, Zhang K, Sheng Y, Cui J, Zhang H, Yang B. Phosphine-free synthesis of Ag–In–Se alloy nanocrystals with visible emissions Nanoscale 7 (2015) 18570-18578.
[103] Yoon H, Oh J, Ko M, Yoo H, Do Y. Synthesis and Characterization of Green Zn–Ag–In–S and Red Zn–Cu–In–S Quantum Dots for Ultrahigh Color Quality of Down-Converted White LEDs. ACS applied materials interfaces 7 (2015) 7342-7350.
[104] Hamanaka Y, Ogawa T, Tsuzuki M, Kuzuya T. Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure. The journal of physical chemistry C 115 (2011) 1786-1792.
[105] Tang X, Yu K, Xu Q, Choo E, Goh G, Xue J. Synthesis and characterization of AgInS2–ZnS heterodimers with tunable photoluminescence. Journal of materials chemistry 21 (2011) 11239.
[106] Fahmi M. Z., Chang J.Y. Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting. Nanoscale 5 (2013) 1517-1528.
[107] Shen, J., Zhu, Y., Yang, X., Zong, J., Zhang, J., and Li, C. (2012). One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36, 97–101.
[108] Liu, J., Li, D., Zhang, K., Yang, M., Sun, H., and Yang, B. (2018). One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 14:1703919.
[109] Wang, G., Guo, G., Chen, D., Liu, Z., Zheng, X., Xu, A., et al. (2018). Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via the hydrothermal treatment of durian. ACS Appl. Mater. Interfaces 10, 5750–5759.
[110] Anwar, S., Ding, H., Xu, M., Hu, X., Li, Z.,Wang, J., et al. (2019). Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl. Bio Mater. 2, 2317–2338.
[111] Zhu, M., Zhou, Y., Sun, Y., Zhu, C., Hu, L., Gao, J., et al. (2018). Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction. Dalton Trans. 47, 5459–5464.
[112] Hola, K., Sudolska, M., Kalytchuk, S., Nachtigallova, D., Rogach, A. L., Otyepka, M., et al. (2017). Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11, 12402–12410.
[113] Lu, S., Sui, L., Wu, M., Zhu, S., Yong, X., and Yang, B. (2019). Graphitic nitrogen and high-crystalline triggered strong photoluminescence and room-temperature ferromagnetism in carbonized polymer dots. Adv. Sci. 6:1801192.
[114] Marlinda, A.R.; Huang, N.M.; Muhamad, M.R.; An’Amt, M.N.; Chang, B.Y.S.; Yusoff, N.; Harrison, I.; Lim, H.N.; Chin, H.; Chia, S.; et al. Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites, Mater. Lett. 2012, 80, 9–12.
[115] Wang C, Gao X, Su X. In Vitro and in Vivo Imaging with Quantum Dots. Analytical and bioanalytical chemistry 397 (2010) 1397-1415.
[116] Luo Z, Zhang H, Huang J, Zhong X. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities Journal of Colloid Interface Sci 377 (2012) 27-33.
[117] Oleg V. Chashchikhin, Mikhail F. Budyka, Tatiana N. Gavrishova, Vitalii M. L. Microwave-assisted one-pot synthesis of hybrid nanosystems based on CdS quantum dots functionalized with organic chromophores: effect of the chromophore nature on the nanosystem composition. RSC Advances · (2017)
[118] Hoogenboom R, Schubert U. Microwave-Assisted Polymer Synthesis: Recent Developments in a Rapidly Expanding Field of Research. Macromolecular rapid communications 28 (2007) 368-386.
[119] Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. Journal of the American chemical society 131 (2009) 16000-16001.
[120] Collins J, Leadbeater N. Microwave energy: a versatile tool for the biosciences. Organic & biomolecular chemistry 5 (2007) 1141-1150.
[121] Xiong W, Yang G, Wu X, Zhu J. Microwave-assisted synthesis of highly luminescent AgInS2/ZnS nanocrystals for dynamic intracellular Cu(ii) detection. Journal of materials chemistry B 1 (2013) 4160.
[122] Mousavi-Kamazani M, Salavati-Niasari M. A simple microwave approach for synthesis and characterization of Ag2S–AgInS2 nanocomposites. Composites part B: engineering 56 (2014) 490-496.
[123] Chang J. Y., Chen G, Li J. Synthesis of magnetofluorescence Gd-doped CuInS2/ZnS quantum dots with enhanced longitudinal relaxivity. Physical chemistry chemical physics 18 (2016) 7132-7140.
[124] Mahshid H, Abdullah M, Alphan S, HavvaY. Multimodal image-guided folic acid targeted Ag-based quantum dots for the combination of selective methotrexate delivery and photothermal therapy. Journal of Photochemistry and Photobiology B: Biology Volume 213, December 2020, 112082.
[125] Zheng N, Dai W, Du W, Zhang H, Lei L. Zhang H, Wang X, Wang J, Zhang X, Gao J, Zhang Q. A novel lanreotide-encoded micelle system targets paclitaxel to the tumors with overexpression of somatostatin receptors. Mol. Pharmaceutics 9 (2012) 1175-1188.
[126] Taheri A, Dinarvand R, Ahadi F, Khorramizadeh M, Atyabi F. The in vivo antitumor activity of LHRH targeted methotrexate-human serum albumin nanoparticles in 4T1 tumor-bearing Balb/c mice. Int. J. Pharm (2012) 431:183-189.
[127] Comfort K, Maurer E, Braydich-stolle L, Hussain S. Interference of Silver, Gold, and Iron Oxide Nanoparticles on Epidermal Growth Factor Signal Transduction in Epithelial Cells. ACS Nano 5 (2011) 10000-10008.
[128] Sega E, Low P. Canc. Tumor detection using folate receptor-targeted imaging agents. Metastasis Rev 27 (2008) 655-664.
[129] Pan J, Wan D, Gong J. PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem. Commun 47 (2011)3442-3444.
[130] Shen F, Ross J, Wang X, Ratnam M. Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry 33 (1994): 1209-1215.
[131] Mayor S, Rothberg K, Maxfield F. Sequestration of GPI-Anchored Proteins in Caveolae Triggered by Cross-Linking. Science 264 (1994): 1948-1951.
[132] Anirudh S, Joydeep D. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol (2019) 17:92.
[133] Ray S, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113(43):18546–51.
[134] Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858–60.
[135] Xu Q, Su R, Chen Y, Sreenivasan ST, Li N, Zheng X, Zhu J, Pan H, Li W, Xu C, Xia Z, Dai L. Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. J Colloid Interface Sci. 2018;1(4):1886–93.
[136] Wang M, Liu X, Cao C, Wang L. Highly luminescent CuInS2–ZnS nanocrystals: achieving phase transfer and nuclear homing property simultaneously through simple TTAB modification Journal of materials chemistry 22 (2012) 21979-21986.
[137] Wang BB, Jin JC, Xu ZQ, Jiang ZW, Li X, Jiang FL, Liu Y. Single-step synthesis of highly photoluminescent carbon dots for rapid detection of Hg2 + with excellent sensitivity. J Colloid Interface Sci. 2019;551:101–10.
[138] Zhou L, Li Z, Liu Z, Ren J, Qu X. Luminescent carbon dot-gated nano vehicles for pH-triggered intracellular controlled release and imaging. Langmuir. 2013;29(21):6396–403.
[139] Zheng M, Liu X, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z. Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater. 2014;21(26):3554–60.
[140] Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, et al. Multi-functionalized carbon dots as theranosticnanoagent for gene delivery in lung cancer therapy. Scientific Rep. 2016;6:21170.
[141] Hassan M, Gomes VG, Dehghani A, Ardekani SM. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018;1(11):1–41.
[142] Ghosal K, Ghosh A. Carbons dots: the next-generation platform for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2019;96:887–903.
[143] Beack S, Kong WH, Jung HS, Do IH, Han S, Kim H, Kim KS, Yun SH, Hahn SK. Photodynamic therapy of melanoma skin cancer using carbon dot—chlorin e6—hyaluronateconjugate. Acta Biomater. 2015;26:295–305.
[144] Yang K, Li F, Che W, Hu X, Liu C, Tian F. Increment of the FRET efficiency between carbon dots and photosensitizers for enhanced photodynamic therapy. RSC Adv. 2016;6(103):101447–51.
[145] Zheng DW, Li B, Li CX, Fan JX, Lei Q, Li C, Xu Z, Zhang XZ. Carbon dot- decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano. 2016;10(9):8715–22.
[146] Guo XL, Ding ZY, Deng SM, Shen XC, Jiang BP, Liang H. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon. 2019;19(134):519–30.
[147] Yang W, Zhang H, Lai J, Peng X, Hu Y, Gu W, Ye L. Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon 2018;128:78-85.
[148] Wu Y-F, Wu H-C, Kuan C-H, Lin C-J, Wang L-W, Chang C-W, Wang T-W. Multifunctionalized carbon dots as theranostic nano agents for gene delivery in lung cancer therapy. Sci Rep 2016;6:21170.
[149] Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 2017;5:8904-8924.
[150] Yao Y-Y, Gedda G, Girma WM, Yen C-L, Ling Y-C, Chang J-Y. Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted dual-modality Bioimaging and Drug Delivery. ACS Appl Mater Interfaces 2017;9(16):13887-13899.
[151] Dehvari K, Liu KY, Tseng P-J, Gedda G, Girma WM, Chang J-Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shells as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng 2019;95:495-503.
[152] Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X, Yang B. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 2015;3(23):5976-5984.
[153] Li X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive detection. Sci Rep 2014;4:4976.
[154] Zong J, Zhu Y, Yang X, Shen J, Li C. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun 2011;47(2):764-766.
[155] Wang R, Lu K-Q, Tang Z-R, Xu Y-J. Recent progress in carbon quantum dots: synthesis, properties, and applications in photocatalysis. J Mater Chem A 2017;5(8):3717-3734.
[156] De B, Karak N. A green and facile approach for the synthesis of water-soluble fluorescent carbon dots from banana juice. RSC Adv 2013;3(22):8286-8290.
[157] Bankoti K, Rameshbabu AP, Datta S, Das B, Mitra A, Dhara S. Onion derived carbon nanodots for live-cell imaging and accelerated skin wound healing. J Mater Chem B 2017;5(32):6579-6592.
[158] Yang K, Liu M, Wang Y, Wang S, Miao H, Yang L, Yang X. Carbon dots derived from fungus for sensing hyaluronic acid and hyaluronidase. Sens Actuator B: Chem 2017;251:503-508.
[159] Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 2012;66(1):222-224.
[160] Ma X, Dong Y, Sun H, Chen N. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Mater Today Chem 2017;5:1-10.
[161] Xu Y, Jia X-H, Yin X-B, He X-W, Zhang Y-K. Carbon Quantum Dot Stabilized Gadolinium Nanoprobe Prepared via a One-Pot Hydrothermal Approach for Magnetic Resonance and Fluorescence Dual-Modality Bioimaging. Anal Chem 2014;86(24):12122-12129.
[162] Pan Y, Yang J, Fang Y, Zheng J, Song R, Yi C. One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging. J Mater Chem B 2017;5(1):92-101.
[163] Chiu S-H, Gedda G, Girma WM, Chen J-K, Ling Y-C, Ghule AV, Ou K-L, Chang J-Y. Rapid fabrication of carbon quantum dots as multifunctional nano vehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 2016;46:151-164.
[164] Chiu SH, Gedda G, Girma WM, Chen JK, Ling YC, Ghule AV, Ou KL, Chang JY. Rapid fabrication of carbon quantum dots as multifunctional nano vehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 2016;46:151-164.
[165] Du F, Zhang M, Li X, Li J, Jiang X, Li Z, Hua Y, Shao G, Jin J, Shao Q. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology 2014;25(31):315702.
[166] Sun S, Zhang L, Jiang K, Wu A, Lin H. Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic. Agents. Chem Mater 2016;28(23):8659-8668.
[167] Leshem G, Richman M, Lisniansky E, Antman-Passig M, Habashi M, Gräslund A, Wärmländer SKTS, Rahimipour S. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues. Chem Sci 2019;10:208-217.
[168] Dehvari K, Li J-D, Chang J-Y. Bovine Serum Albumin-Templated Synthesis of Manganese-Doped Copper Selenide Nanoparticles for Boosting Targeted Delivery and Synergistic Photothermal and Photodynamic Therapy. ACS Appl Bio Mater 2019;2(7):3019-3029.
[169] Mojzisova H, Bonneau S, Maillard P, Berg K, Brault D. Photosensitizing properties of chlorine in solution and membrane-mimicking systems. Photochem Photobiol Sci 2009;8(6):778-787.
[170] Yu X, Tang X, He J, Yi X, Xu G, Tian L, Zhou R, Zhang C, Yang K. Polydopamine Nanoparticle as a Multifunctional Nanocarrier for Combined Radiophotodynamic Therapy of Cancer. Part Syst Charact 2017;34(2):1600296.
[171] Choi K-H, Nam KC, Cho G, Jung J-S, Park BJ. Enhanced Photodynamic Anticancer Activities of Multifunctional Magnetic Nanoparticles (Fe3O4) Conjugated with Chlorin e6 and Folic Acid in Prostate and Breast Cancer Cells. Nanomaterials 2018;8(9):722.
[172] Chen S-H, Huang W-W, Dehvari K, Ling Y-C, Ghule AV, Tsai S-L, Chang J-Y. Photosensitizer–conjugated Cu-In-S heterostructured nanorods for cancer-targeted photothermal/photodynamic synergistic therapy. Mater Sci Eng C 2019;97:793-802.
[173] Dehvari K, Lin P-T, Chang J-Y. Fluorescence-guided magnetic nanocarriers for enhanced tumor targeting photodynamic therapy. J Mater Chem B 2018;6(28):4676-4686.
[174] Fahmi MZ, Chang J-Y. Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting. Nanoscale 2013;5(4):1517-1528.
[175] Sureshkumar S, Jothimani B, Sridhar TM, Santhosh A, Venkatachalapathy B. Synthesis of Hexagonal ZnO-PQ7 Nano Disks Conjugated with Folic Acid to Image MCF – 7 Cancer Cells. J fluorescent 2017;27(1):21-29.
[176] Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L and others. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 2014;5:5357.
[177] Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T. Carbon‐Based Dots Co‐doped with Nitrogen and Sulfur for High Quantum Yield and Excitation‐Independent Emission. Angew Chem Int Ed 2013;52(30):7800-7804.
[178] Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang SX-A. Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chem Mater 2014;26(10):3104-3112.
[179] Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016;10(1):484-491.
[180] Bao L, Liu C, Zhang ZL, Pang DW. Photoluminescence‐Tunable Carbon Nanodots: Surface‐State Energy‐Gap Tuning. Adv Mater 2015;27(10):1663-1667.
[181] Xu J, Gao J, Wei Q. Combination of Photodynamic Therapy with Radiotherapy for Cancer Treatment. J Nanomater 2016;2016:8507924.
[182] Niu D, Luo X, Li Y, Liu X, Wang X, Shi J. Manganese-Loaded Dual-Mesoporous Silica Spheres for Efficient T1- and T2-Weighted Dual Mode Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2013;5(20):9942-9948.
[183] Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, et al. A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc. 2010;132(43):15351-8.
[184] Chu Z, Wang Z, Chen L, Wang X, Huang C, Cui M, et al. Combining magnetic resonance imaging with photothermal therapy of CuS@BSA nanoparticles for cancer theranostics. ACS Applied Nano Materials. 2018;1(5):2332-40.
[185] Choi J, Kang N, Yang HY, Kim HJ, Son SU. Colloidal synthesis of cubic-phase copper selenide nanodiscs and their optoelectronic properties. Chem Mater. 2010;22(12):3586-8.
[186] Patidar D, Saxena NS. Characterization of single-phase copper selenide nanoparticles and their growth mechanism. J Cryst Growth. 2012;343(1):68-72.
[187] Tsai JS, Dehvari K, Ho WC, Waki K, Chang JY. In Situ Microwave‐Assisted Fabrication of Hierarchically Arranged Metal Sulfide Counter Electrodes to Boost Stability and Efficiency of Quantum Dot‐Sensitized Solar Cells. Adv Mater Interfaces. 2019;6(5):1801745.
[188] Zhu D, Tang A, Kong Q, Zeng B, Yang C, Teng F. Roles of Sulfur Sources in the Formation of Alloyed Cu2–xSySe1–y Nanocrystals: Controllable Synthesis and Tuning of Plasmonic Resonance Absorption. J Phys Chem C. 2017;121(29):15922-30.
[189] Chen S-H, Huang W-W, Dehvari K, Ling Y-C, Ghule AV, Tsai S-L, et al. Photosensitizer–conjugated Cu-In-S heterostructured nanorods for cancer-targeted photothermal/photodynamic synergistic therapy. Mater Sci Eng C Mater Biol Appl. 2019;97:793-802.
[190] Chen B, Zhong H, Zhang W, Tan Za, Li Y, Yu C, et al. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv Funct Mater. 2012;22(10):2081-8.
[191] Rasal AS, Chen YH, Dehvari K, Getachew G, Tseng PJ, Waki K, et al. Efficient quantum-dot-sensitized solar cells with improved stability using thixotropic polymer/nanoparticles-based gel electrolyte. Materials Today Energy. 2021;19:100615.
[192] Wang S, Riedinger A, Li H, Fu C, Liu H, Li L, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano. 2015;9(2):1788-800.
[193] Liu Y, Liu M, Yin D, Qiao L, Fu Z, Swihart MT. Selective cation incorporation into copper sulfide-based nanoheterostructures. ACS Nano. 2018;12(8):7803-11.
[194] Tan Z, Zhang Y, Xie C, Su H, Liu J, Zhang C, et al. Near-Band-Edge Electroluminescence from Heavy-Metal-Free Colloidal Quantum Dots. Adv Mater. 2011;23(31):3553-8.
[195] Yang C-T, Hsiang H-I. Rapid synthesis and characterization of nearly dispersed marcasite CuSe2 and berzelianite Cu2Se crystallites using the chemical reduction process. Mater Res Bull. 2018;97:30-6.
[196] Ghosh S, Avellini T, Petrelli A, Kriegel I, Gaspari R, Almeida G, et al. Colloidal CuFeS2 Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. Chem Mater. 2016;28(13):4848-58.
[197] Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011;11(6):2560-6.
[198] Liu H, Zhang J, Zheng X, Liu G, Hu H, Pan W, et al. Polyol process synthesis of metal selenide nanomaterials and their photovoltaic application. CrystEngComm. 2016;18(36):6860-6.
[199] Yun HJ, Lim J, Roh J, Neo DCJ, Law M, Klimov VI. Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots. Nat Commun. 2020;11(1):5280.
[200] Zhang R, Deng T, Wang J, Wu G, Li S, Gu Y, et al. Organic-to-aqueous phase transfer of Zn–Cu–In–Se/ZnS quantum dots with multifunctional multidentate polymer ligands for biomedical optical imaging. New J Chem. 2017;41(13):5387-94.
[201] Chen S-H, Huang W-W, Dehvari K, Ling Y-C, Chang J-Y. Photosensitizer–conjugated Cu-In-S heterostructured nanorods for cancer-targeted photothermal/photodynamic synergistic therapy. Mater SciEng C. 2019;97:793-802.
[202] Dehvari K, Li J-D, Chang J-Y. Bovine serum albumin-templated synthesis of manganese doped copper selenide nanoparticles for boosting targeted delivery and synergistic photothermal and photodynamic therapy. ACS Appl Bio Mater. 2019;2(7):3019-29.
[203] Dehvari K, Liu KY, Tseng P-J, Gedda G, Girma WM, Chang J-Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shells as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng. 2019;95:495-503.
[204] Girma WM, Dehvari K, Ling Y-C, Chang J-Y. Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. Mater Sci Eng C. 2019.
[205] Irmania N, Dehvari K, Gedda G, Tseng PJ, Chang JY. Manganese‐doped green tea‐derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform. J Biomed Mater Res B: Appl Biomater. 2020;108(4):1616-25.
[206] Karan NS, Sarma D, Kadam R, Pradhan N. Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals. The Journal of Physical Chemistry Letters. 2010;1(19):2863-6.
[207] Lai P-Y, Huang C-C, Chou T-H, Ou K-L, Chang J-Y. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta biomaterials. 2017;50:522-33.
[208] Abate MA, Dehvari K, Chang J-Y, Waki K. Aqueous synthesis of Mn-doped CuInSe 2 quantum dots to enhance the performance of quantum dot sensitized solar cells. Dalton Trans. 2019;48(42):16115-22.
[209] Tian J, Lv L, Fei C, Wang Y, Liu X, Cao G. A highly efficient (> 6%) Cd 1− x Mn x Se quantum dot sensitized solar cell. Journal of Materials Chemistry A. 2014;2(46):19653-9.
[210] Gopi CV, Venkata-Haritha M, Kim S-K, Kim H-J. A strategy to improve the energy conversion efficiency and stability of quantum dot sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 2015;44(2):630-8.
[211] Chiang Y-H, Lin K-Y, Chen Y-H, Waki K, Abate MA, Jiang J-C, et al. Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot sensitized solar cells. Journal of Materials Chemistry A. 2018;6(20):9629-41.
[212] Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(2):162-73.
[213] Thuen M, Berry M, Pedersen TB, Goa PE, Summerfield M, Haraldseth O, et al. Manganese-enhanced MRI of the rat visual pathway: Acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn2+. J Magn Reson Imaging. 2008;28(4):855-65.
[214] Dehvari K, Chiu S-H, Lin J-S, Girma WM, Ling Y-C, Chang J-Y. Heteroatom-doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomater. 2020.
[215] Li L, Rashidi LH, Yao M, Ma L, Chen L, Zhang J, et al. CuS nanoagents for photodynamic and photothermal therapies: Phenomena and possible mechanisms. Photodiagnosis Photodyn Ther. 2017;19:5-14.
[216] He S-J, Cao J, Li Y-S, Yang J-C, Zhou M, Qu C-Y, et al. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. World J Gastroenterol. 2016;22(21):5012.
[217] Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, et al. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem Rev. 2019;119(2):797-828.
[218] Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics. 2019;9(23):6809-23.
[219] Nafiujjaman M, Chung S-J, Kalashnikova I, Hill ML, Homa S, George J, et al. Biodegradable Hollow Manganese Silicate Nanocomposites to Alleviate Tumor Hypoxia toward Enhanced Photodynamic Therapy. ACS Appl Bio Mater. 2020;3(11):7989-99.
[220] Zhu W, Dong Z, Fu T, Liu J, Chen Q, Li Y, et al. Modulation of Hypoxia in Solid Tumor Microenvironment with MnO2 Nanoparticles to Enhance Photodynamic Therapy. Adv Funct Mater. 2016;26(30):5490-8.
[221] Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang J-Y. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B. 2017;5(31):6193-216.
[222] Li L-L, Cui Y-H, Chen J-J, Yu H-Q. Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots. Frontiers of Environmental Science & Engineering. 2017;11(6):7.
[223] Arshad A, Akram R, Iqbal S, Batool F, Iqbal B, Khalid B, et al. Aqueous synthesis of tunable fluorescent, semiconductor CuInS2 quantum dots for bioimaging. Arabian Journal of Chemistry. 2019;12(8):4840-7.
[224] Qian H, Qiu X, Li L, Ren J. Microwave-Assisted Aqueous Synthesis: A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots. The Journal of Physical Chemistry B. 2006;110(18):9034-40.
[225] Qian X, Han X, Yu L, Xu T, Chen Y. Manganese-Based Functional Nanoplatforms: Nanosynthetic Construction, Physiochemical Property, and Theranostic Applicability. Adv Funct Mater. 2020;30(3):1907066.
[226] Mauri M, Collico V, Morelli L, Das P, García I, Penaranda Avila J, et al. MnO Nanoparticles Embedded in Functional Polymers as T1 Contrast Agents for Magnetic Resonance Imaging. ACS Applied Nano Materials. 2020;3(4):3787-97.
[227] Low P, Kularatne S. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol, 2009, 13. 256-262.
[228] Zenkevich E, Sagun E, Gaponenko S, Borczyskowski. Bioconjugates Based on Semiconductor Quantum Dots and Porphyrin Ligands: Properties, Exciton Relaxation Pathways and Singlet Oxygen Generation Efficiency for Photodynamic Therapy Applications Reviews in Nanoscience and Nanotechnology 2(3) June 2013.

無法下載圖示 全文公開日期 2025/02/08 (校內網路)
全文公開日期 2027/02/08 (校外網路)
全文公開日期 2027/02/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE