簡易檢索 / 詳目顯示

研究生: 張 詠
Yong - Chang
論文名稱: 超疏水高分子薄膜應用於奈米草矽基材及奈米碳管基材其抗反射性與耐候性之探討與研究
The study of anti-reflectivity and durability of superhydrophobic polymer film applied on nanograss silicon substrate and carbon nanotubes substrate
指導教授: 陳建光
Jem-Kun Chen
口試委員: 楊銘乾
Ming-Chien Yang
邱顯堂
Hsien-Tang Chiu
張豐志
Feng-Chih Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 自潔表面超疏水性抗反射奈米草
外文關鍵詞: self-clean surface, superhydrophobicity, anti-reflective, nanograss
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超疏水自潔性質薄膜應用廣泛,其表面能低、水滴接觸角大,利於水珠滾動等特性,使得物體表面不易沾附灰塵髒汙。本論文主題有二,以BA-a polybenzoxazine 超疏水薄膜為主體分別如下分兩部分探討:
(1)以表面具有抗反射性質的奈米草矽基材,塗覆上具超疏水自清潔性質的高分子薄膜,不但有優異的抗反射性質,且能同時保有超疏水自清潔表面性質。
首先以H2電漿蝕刻矽晶圓,使其表面呈微觀奈米草結構;接著以BA-a benzoxazine 高分子與 SiO2 奈米粒子混合,旋轉塗覆在奈米草矽基材結構上,製備出超疏水薄膜。薄膜疏水性依SiO2添加比例增加而提高,而抗反射性質則遞減;結果以大約10:1的高分子與SiO2添加比例的薄膜具超疏水性質同時光線反射率低於10%。
(2)奈米碳管強固耐久、應用層面廣。以奈米碳管為基材製備超疏水薄膜:首先以THF配製10wt%的BA-a benzoxazine塗覆在玻璃片上,接著再將奈米碳管塗覆於其上並加熱使benzoxazine交聯固著奈米碳管。最後以不同濃度之BA-a benzoxazine塗覆在最上層;其BA-a benzoxazine的濃度以10wt%的薄膜疏水性最佳,而耐候性也隨著疏水性增加而提高,且經去離子水浸泡1.5天後其疏水性仍維持不變。


The superhydrophobic self-clean thin film has extensive applications to the industrial ascribed to its excellent water repellency, low droplet sliding angle. In this study, the BA-a polybenzoxazine superhydrophobic thin film as the main theme and discusses in two parts below:
(1)The self-clean polybenzoxazine based thin film coated on nanograss surface-like silicon wafers which possesses both anti-reflective and superhydrophobic properties.
First of all, we demonstrate nanograss surface-like silicon wafers etched by H2 plasma as the substrate, then coated with SiO2 nanoparticles blended BA-a polybenzoxazine thin film subsequently. We found that when the content of SiO2 nanoparticles increased, the hydrophobicity of the film increased consequently, and conversely the anti-reflective of light decreased. As a result, the ratio of BA-a polybenzoxazine and SiO2 nanoparticles as about 10:1 to thin film which possesses superhydrophobic property and the reflectance of light can be lower than 10%.
(2)Carbon nanotubes has excellent durability and extensive applications. We use the carbon nanotubes as substrate to prepare the superhydrophobic film. First, 10wt% of BA-a benzoxazine dissolved in THF and spin-coated on glass slide, then carbon nanotubes spread on it and cured subsequently. The carbon nanotubes fastened on cross-linked polybenzoxazine. Finally, different concentration of BA-a benzoxazine coated on the top. The concentration of BA-a benzoxazine as 10wt% which provided better hydrophobicity. The durability of the film increased by improving its hydrophobicity. When immersing the film in deionized water for 1.5 days, the superhydrophobicity maintained consistent after drying in oven.

摘要 I Abstract III 第一章 緒論 1 1.1 前言 1 l.2 超疏水表面製備和發展 2 1.3 太陽電能原理 3 1.4 影響效率之因素 5 1.5 研究動機與目的 7 第二章 文獻回顧 9 2.1 抗反射光學效應 9 2.1.1 破壞性干涉機制 9 2.1.2 漸變折射率機制 10 2.2 金字塔抗反射結構之應用 11 2.2.1 金字塔結構的抗反射機制 13 2.3 奈米草結構的抗反射比較 15 2.4 表面接觸角介紹 17 2.4.1液滴濕潤表面現象 17 2.4.2表面接觸角量測 19 2.4.3遲滯角 21 2.4.4滾動角 23 2.4.5超疏水條件 24 2.5 超疏水材料 24 2.5.1 超疏水原理和機制 24 2.5.2 超疏水表面粗糙度 25 2.5.3 製備超疏水表面方法 29 2.6使用奈米粒子製造粗糙表面之文獻介紹 33 2.6.1對使用奈米粒子製造粗糙表面的研究 33 2.6.2使用奈米粒子製備超疏水表面 34 2.7 Benzoxazine及Polybenzoxazine介紹 39 2.7.1 Benzoxazine及Polybenzoxazine概述 39 2.7.2 Benzoxazine單體及Polybenzoxazine高分子的 41 合成 41 2.7.3 BA-a Benzoxazine 44 2.7.4 BA-a Polybenzoxazine 46 2.8 以B-ala Polybenzoxazine製備超疏水表面並以UV照射使其成為超親水表面原理 52 2.8.1 B-ala Benzoxazine與SiO2無機奈米粒子混成薄 52 膜之製備 52 2.8.2 疊加B-ala Benzoxazine薄膜之製備 53 2.8.3 以UV照射製備超親水表面 53 2.8.4 UV光製備選擇性超親水之討論 56 2.9 奈米碳管應用介紹 59 第三章 實驗方法與步驟 62 3.1 實驗目的 62 3.2 使用儀器 63 3.3 實驗材料與藥品 63 第四章 以奈米草結構為基材之BA-a/SiO2Polybenzoxazine低表面能疏水性薄膜 66 4.1奈米草之製備 66 4.2 BA-a Benzoxazine與SiO2奈米粒子混成薄膜之製備 69 4.3 疊加BA-a Benzoxazine薄膜之製備 70 4.4 表面接觸角量測 71 4.5 表面抗反射性質 74 4.5.1 積分球原理簡介 74 4.5.2 表面反射率 75 4.6 表面結構觀察 76 第五章 以奈米碳管為底材之BA-a Polybenzoxazine低表面能疏水性薄膜 82 5.1 奈米碳管基材製備 82 5.2疊加BA-a Benzoxazine薄膜之製備 84 5.3奈米碳管基材 85 5.4 表面接觸角 87 5.5 耐候性浸泡試驗 88 第六章 結論 91 6.1 以奈米草為基材之超疏水抗反射薄膜未來應用趨勢 91 6.2 以奈米碳管為基材之超疏水薄膜未來應用趨勢 92

1. W. Hoagland, “Solar energy”, Sci. Amer, Vol. 273, pp. 170,173(1995)
2. G. R. Davis, “Energy for planet earth”, Sci. Amer, Vol. 263, No. 3, pp.
21,27(1990)
3. K. N. Amulya and J. Goldemberg, “Energy for the developing world”,
Sci Amer, Vol. 263, No. 3, pp. 63,71(1990)
4. W. Barthlott and C. Neinhuis,“ Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, 202, 1,8(1997)

5. 王宗新,「金字塔抗反射結構之製作及其單晶矽太陽能電池之應用」,碩士論文,國立中山大學光電工程研究所,高雄(2007)

6. 林天財,鍾孟融,劉俊佳,郭庭杰,吳恩翰,薛育林,「矽基薄膜太陽能電池」,專題報告,崑山科技大學電機工程系,台南(2006)

7. J. D. Hylton, A. R. Burgers, W. C. Sinke,“Absorption in thin textured silicon wafers”, Netherlands Energy Research Foundation ECN(Energy research Centre of the Netherlands), ECN publications, ECN,02,006(1997)

8. Yonghao Xiu, Shu Zhang, Vijay Yelundur, Ajeet Rohatgi, Dennis W. Hess, and C. P. Wong, “Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching”, Langmuir, 24 (18), 10421,10426(2008)

9. J Shieh, C H Lin and M C Yang,“ Plasma nanofabrications and
antireflection applications”, JOURNAL OF PHYSICS D: APPLIED PHYSICS,J. Phys. D: Appl. Phys. 40 2242,2246(2007)

10. K. MA, T. S. Chung and R. J. Good J. “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide”, Polym. Sci. B, 36, 2327(1998)

11. S. Wu,“Polymer interface and adhesion”, Marcel Dekker Inc. p16(1982)

12. A. W. Neumann, D. Renzow, H. Reumuth and I. E. Richter,“Der Einfluß der Rauhigkeit auf die Benetzung”, Forschr. Kolloide and Polymere, 55, 49(1971)

13. J. F. Padday, “Wetting, Spreading and Adhesion”, Academic Press, p17(1978)

14. J. F. Padday, “Wetting, Spreading and Adhesion”, Academic Press(1978)

15. J. Tsibouklis and T. G. Nevell, “Ultra-low surface energy polymers: The molecular design requirements”, Adv. Mater., 14, 647(2003)

16. D. P. Carlson and W. Schmiegel, “Ullmann’s encyclopedia
of industrial chemistry”, VCH Verlagsgesellschaft: Weinheim,
p393(1988)

17. L. Jiang and D. Zhu, “Reversible switching between
superhydrophilicity and superhydrophobicity”, Angew Chem. Int. Ed., 43, 357(2004)

18. R. N. Wenzel, “Resistance of solid surfaces to wetting by water”, Ind. Eng. Chem., 28, 988(1936)

19. D. Quéré ,“On water repellency”, Soft Matter, 1, 55(2005)

20. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc., 40, 546(1944)

21. A. B. D. Cassie and S. Baxter, J. Text. Inst., 36, T67(1945)

22. N. J. Shirtcliffe, G. McHale, M. I. Newton and C. C. Perry, “Intrinsically superhydrophobic organosilica sol−gel foams”, Langmuir
, 19, 5626(2003)

23. J. P Youngblood and T. J. McCathy,“Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma”, Macromoleculs, 32, 6800(1999)

24. S. Shibuichi, T. Yamamoto, T. Onda and K. Tsujii J. ,“Super water- and oil-repellent surfaces resulting from fractal structure”, Colloid Int. Sci., 208, 287(1998)

25. R. Blossey ,“Self-cleaning surfaces — virtual realities”, Nature Materials, 2, 301(2003)

26. D. Öner and T. J. McCathy, “Ultrahydrophobic surfaces. Effects of topography length scales on wettability”, Macromolecules, 16, 777(2000)

27. A. L Demirel ,“Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the Wenzel regime by composition”, Langmuir, 21, 5073(2005)

28. F. W. Holly and C. Cope ,“Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine”, J. Am. Chem. Soc.,66, 1875(1944)

29. W. J Burke, “3,4-dihydro-1,3-2H-benzoxazines. Reaction of p-substituted phenols with N,N-dimethylolamines”, J. Am. Chem. Soc., 71, 609(1949)

30. X. Ning and H. Ishida, “Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based
benzoxazines and their polymers”, J. Polym. Sci. Part A: Polym. Chem., 32,1121(1994)

31. H. Ishida US patent 5 543 516, Aug. 6(1996)

32. 蘇一哲,「聚氧代氮代苯并環己烷於高分子作用力、低介電材料與嵌入式錯合物的合成與研究」,博士論文,國立交通大學應用化學研究所,新竹(2004)

33. Y. Rodriguez and H. Ishida, “Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry”, Polymer, 36, 3151(1995)

34. J. Dunkers and H. Ishida ,“Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts”, J. Polym. Sci. Part A: Polym. Chem.,37, 1913(1999)

35. H. Ishida, ,“Cationic ring-opening polymerization of benzoxazines”, Polymer, 40, 4563(1999)

36. H. D. Kim and H. Ishida, “Study on the chemical stability of benzoxazine-based phenolic resins in carboxylic acids”, J. Appl. Polym. Sci.,79,1207(2001)

37. H. Ishida, Y-H. Lee, “Infrared and thermal analyses of polybenzoxazine and polycarbonate blends”, J. Appl. Polym. Sci.,81,1021(2001)

38. K. X. Ma and T. S. Chung, “Effect of −C(CF3)2− on the surface energy  
of main-chain liquid crystalline and crystalline polymers”, J. Phys.  
Chem.B, 105, 4145(2001)

39. C. F. Wang ,F. C. Chang, “Low-surface-free-energy materials based on polybenzoxazines”, Angew. Chem. Int. Ed.,45,2248(2006)

40. H.D.Kim, H. Ishida, “A study on hydrogen-bonded network structure of polybenzoxazines”, J. Phys. Chem. A.,106,3271(2002)

41. Ming-Che Yang, Jiann Shieh, Chiung-Chih Hsu, and
Tsung-Chieh Cheng, “Well-aligned silicon nanograss fabricated by hydrogen plasma dry etching”, Electrochemical and Solid-State Letters, 8 (10) C131-C133(2005)

42.周綱彥,「交聯劑對材料表面能及熱性質之影響與超疏水至超親水間
可控表面之研究」,碩士論文,國立台灣科技大學高分子工程研究
所,台北(2008)

43. Chun-Syong Liao, Chih-Feng Wang, Han-Ching Lin, Hsin-Yi Chou, and Feng-Chih Chang, “Tuning the surface free energy of polybenzoxazine thin films,” J. Phys. Chem. C, 112 (42), pp 16189–16191(2008)

44. Light Ports Incorporated. Light Ports information service guide. Taiwan: Light Ports(2002)

45. Stefan J. Pastine, David Okawa, Brian Kessler, Marco Rolandi, Mark Llorente, Alex Zettl, and Jean M. J. Fre´chet, “A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides”, Journal of the American Chemical Society,130 (13) (2008)

46. Sunny Sethi, and Ali Dhinojwala, “Superhydrophobic conductive carbon nanotube coatings for steel”, Langmuir, 25 (8), pp 4311–4313(2009)

47. Bhalchandra A. Kakade, and Vijayamohanan K. Pillai, “Tuning the wetting properties of multiwalled carbon nanotubes by surface functionalization”, J. Phys. Chem. C, 112 (9), pp 3183–3186(2008)

48. Sung-Kyoung Kim, Haiwon Lee, Hirofumi Tanaka, and Paul S. Weiss, “Vertical alignment of single-walled carbon nanotube films formed
by electrophoretic deposition”, Langmuir, 24 (22), 12936-12942(2008)

無法下載圖示 全文公開日期 2014/07/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE