簡易檢索 / 詳目顯示

研究生: 陳思羽
Szu-yu Chen
論文名稱: 以光學級環氧樹脂封裝之太陽能電池封裝表面抗反射微結構分析與驗證
Analysis and Verification of Anti-reflection Micro-texture on Optical Grade Epoxy Encapsulated Solar Cell Module
指導教授: 蔡明忠
Ming-Jong Tsai
口試委員: 湯華興
Hwa-Hsing Tang
彭成瑜
Cheng-Yu Peng
李俊豪
Chun-Hao Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 153
中文關鍵詞: 太陽電池模組光學級環氧樹脂(Epoxy)抗反射微結構倒金字塔Tracepro
外文關鍵詞: Solar cell module, Epoxy, Anti-reflection, Micro-structure, Inverted pyramid, Tracepro
相關次數: 點閱:225下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Tracepro模擬倒金字塔與倒半橢球微結構之抗反射能力,並將表現最佳的微結構的反向結構製作成不鏽鋼模具。進行Epoxy-based太陽能電池模組之封裝時,以此模具壓印微結構於高穿透光學級環氧樹脂(epoxy)形成微結構表面。
    本研究透過改變微結構的間距(pitch)與斜面角度(θ)尋找最佳微結構,間距變化在10μm到100μm之間,角度變化在15度到75度之間。以AM1.5G光源(300nm到1200nm),進行光線追跡模擬,比較各種微結構下,偵測面蒐集到的穿透光與反射光能量大小。模擬結果顯示,無微結構的Epoxy穿透率為91.21%、反射率為8.343%。倒金字塔結構優於倒半橢球結構,當倒金字塔微結構間距為pitch(p)=90μm與角度為θ=45o時,有最佳的穿透率95.21%與反射率1.401%。經以自製的Epoxy-based太陽能電池模組驗證結果顯示,無微結構的Epoxy穿透率約為90%,有倒金字塔微結構的反射率為1.4%,與模擬結果相近。


    This paper uses Tracepro to simulate two kinds of anti-reflection textures which are inverted pyramid and inverted semi-ellipsoid. Then, the best micro-structure was reversely manufactured on the surface of stainless steel mold which is used to imprint the inverted pyramid structure on the surface of epoxy-based encapsulated solar cell modules.
    In this study, in order to find the best micro-structure, the simulation range of the micro-structure’s pitch is between 10μm and 100μm, while the range of the structure’s angle is between 15o and 75o. The AM1.5G (300nm~1200nm) is used as the light source to carry out the simulation and record the energy which is collected by detectors. The simulation results show that the transmission and the reflection of the Epoxy with flat surface are 91.21% and 8.343%, respectively. For an Epoxy’s surface with micro-sturcture, the inverted pyramid structure is better than inverted semi-ellipsoid. The best transmission and reflection of the Epoxy with micro-sturcture are 95.21% and 1.401% in which the pitch is 90μm and the angle is 45o. The measured results of an experimental Epoxy-based solar cell module show that the transmission of a flat Epoxy is 90% and the reflection of the micro-structure is 1.4% which are consistent with the simulation results.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景 3 1.2 研究動機與目的 8 1.3 研究方法與步驟 15 1.4 本文架構 17 第二章 相關原理與文獻回顧 21 2.1 太陽能電池種類與效率 21 2.2 太陽光譜 24 2.3 太陽能電池發電原理 29 2.4 從矽晶到太陽能模組 38 2.4.1 矽晶電池製作過程 39 2.4.2 太陽電池模組化製程 42 2.5 文獻回顧 45 2.5.1 抗反射薄膜 (Anti-reflection coating) 50 2.5.2 抗反射微結構 (Anti-reflection texture) 52 第三章 模擬架構與結果 59 3.1 TRACEPRO軟體簡介 60 3.2 光線追跡 63 3.3 模型架構建立 66 3.3.1 光源設定 69 3.3.2 微結構 73 3.3.3 材料的參數設定 76 3.4 撰寫巨集(MACRO) 77 3.5 模擬程序 80 3.5.1 理論值與模擬值比較 80 3.5.2 單波長、單折射率模擬 85 3.5.3 多波長、多折射率模擬 88 3.6 模擬結果討論 91 3.6.1 穿透Gain值與反射Gain值比較 93 3.6.2 微結構的形狀、角度對穿透率與反射率的影響 94 第四章 太陽能電池模組實作驗證 100 4.1 實驗器材介紹 100 4.2 太陽能電池模組製作 106 4.3 驗證與結果討論 108 第五章 結論與未來研究方向 118 5.1 結論 118 5.2 未來研究方向 120 參考文獻 123 附件一 MACRO程式碼 129 附件二 EPOXY規格書 134

    [1] Dr. Winfried Hoffmann,“PV Solar Electricity: Status and Future,”Proc. SPIE 6182, Photonic Crystal Materials and Devices III, 618208 ; doi:10.1117/12.683069 (2006)
    [2] Goswami, D. Yogi, Kreith,Frank,Handbook of Energy Efficiency and Renewable Energy, CRC Press, Boca Raton, pp. 23 (2007)
    [3] 林師模,「台灣發展風力發電之技術經濟分析與3E效益評估」,行政院原子能委員會委託研究計畫研究報告(計畫編號:1022001INER041),中原大學,桃園,臺灣 (2013)。
    [4] 何孟穎等,2012年太陽光電市場與產業技術發展年鑑,光電科技協進會,台北,臺灣,第69-83頁 (2012)。
    [5] Bundeskartellamt, “Monitoringreport 2012”,Bundesnetzagentur, Bonn, Germany. (2012).
    [6] 陽光屋頂百萬座,設置資訊 (設置費用試算) www.mrpv.org.tw/setting.php
    [7] 台灣電力公司,發電資訊 (再生能源發電概況) www.taipower.com.tw/content/new_info/new_info-b33.aspx?LinkID=8
    [8] Display Search, “Quarterly PV Cell Capacity Database & Trends Report” , PV Equipment Quarterly, Texas, USA (2009)
    [9] Czanderna, A.W., Pern,F.J., “Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review,”Solar Energy Materials and Solar Cells, Vol.43, pp.101-181. (1996)
    [10] 林明獻,太陽電池技術入門,全華科技圖書股份有限公司,台北 (2007) 。
    [11] 黃如斌,「太陽電池表面抗反射特性之模組封裝研究」,明新科技大學專題研究報告,新竹,臺灣(2010)。
    [12] 王泰瑞、孫佳涼、孫文檠,「抗反射膜玻璃應用於太陽電池模組之發展現況」,工研院電子報,第10209期 (2013)。
    [13] Tsai, Ming-Jong, Kuo, Hung-Fei, Peng, Cheng-Yu, Yang, Ming-Fu, Cheng, Chao-Hung, “Study of Epoxy-based optical layer technology for a solar cell module structure,” International Conference on Optics and Photonics in Taiwan (OPT2010), Tainan (2010).
    [14] 蔡明忠、郭鴻飛、楊明輔、丁顯威、鄭兆宏,「模組封裝之光學界面層技術計畫結案報告」,工研技術研究院,新竹,臺灣 (2010)。
    [15] 顧鴻壽,太陽能電池元件導論-材料、元件、製程、系統,全威圖書有限公司,第21-22頁 (2012)
    [16] 翁敏航、楊茹媛、管鴻、晁成虎,太陽能電池-原理、元件、材料、製程與檢測技術,東華書局 (2010)
    [17] King, R. R. et al., 24th European Photovoltaic Solar Energy Conf., Hamburg, Germany, Sep. 21-25 (2009)
    [18] Thekackara, M. P., The Solar Constant and the Solar Spectrum Measured from a Research Aircraft, NASA Techenical Report (No. R-351), USA (1970)
    [19] 顧鴻壽,太陽能電池元件導論-材料、元件、製程、系統,全威圖書有限公司,第16頁 (2012)
    [20] ASTM E490-00a (Reapproved 2014), StandardSolar Constant and Zero Air Mass Solar Spectral IrradianceTables, ASTM International, USA (2014)
    [21] ASTM G173 – 03 (Reapproved 2012), Standard Tables forReference Solar Spectral Irradiances: Direct Normal andHemispherical on 37° Tilted Surface, ASTM International, USA (2012)
    [22] Green, Martin A., Solar Cells Operating Principles, Technology and System Application, Prentice Hall (1981)
    [23] Kasap,S.O.,Optoelectronics and Photonics: Principles and Practices, Upper Saddle River, NJ : Prentice Hall(2001)
    [24] 韓至成、朱興發、劉林,太陽能級矽提煉技術與裝備,冶金工業出版社,北京,第26~34頁 (2011)
    [25] 佐藤勝昭,金色的能量:太陽能電池大揭密彭成瑜,科學出版社,北京,第45頁 (2011)
    [26] 工研院綠能所展示中心
    [27] 蘇文源、張銘坤,「太陽光電發電系統之作業安全研究」,行政院勞工委員會勞工安全衛生研究所(IOSH101-S303),臺北,臺灣 (2012)
    [28] Bass, Michael, Mahajan, Virendra N.,Optical Society of America, Handbook of optics, McGraw-Hill, NY (2010)
    [29] 蕭立君,「抗反射模對III-V族太陽電池量子效率之影響」,碩士論文,中原大學,桃園 (2004)
    [30] 羅吉宗,薄膜科技與應用,全華圖書 (2004)
    [31] Sparber,W., Schultz, O., Biro, D., Emanuel, G., Preu, R., Poddey, A., Borchert, D., “Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na2CO3,”World Conference on Photovoltaic Energy Conversion (WCPEC), Vol. 2, pp. 1372-1375 (2003)
    [32] Chu, A.K., Wang, J.S., Tsai, Z.Y., Lee, C.K., “A simple and cost-effective approach for fabricating pyramids on crystallinesilicon wafers,” Solar Energy Materials and Solar Cells, Vol. 93 (Issue 8), pp. 1276-1280 (2009)
    [33] Dimitrov, Dimitre Z., Du, Chen-Hsun, “Crystalline silicon solar cell with micro/nano texture,” Applied Surface Science, Vol. 266, pp. 1-4 (2013)
    [34] Assi, A., Al-Amin, M., “Enhancement of Electrical Performance of Acid Textured Multi Crystalline Silicon Solar cells,”Renewable Energies for Developing Countries (REDEC), pp. 1-7 (2012)
    [35] Kuan, T. M., Huang, C. C., Yu, C. Y., Wu L. G., “High Efficiency Large-Area Multi-Crystalline Silicon Solar Cells Using Reactive ion etching technique,”Photovoltaic Specialists Conference (PVSC), pp. 2221-2223 (2013)
    [36] YojiSaitoa, Takeshi Kosuge,“Honeycomb-textured structures on crystalline silicon surfaces for solar cells by spontaneous dry etching with chlorine trifluoride gas,” Solar Energy Materials & Solar Cells, Vol. 91, pp. 1800-1804 (2007)
    [37] Zielke,D., Sylla,D., Neubert, T., Brendel, R., Schmidt, J., “Direct Laser Texturing for High-EfficiencySilicon Solar Cells,”IEEE Journal of Photovoltaics, Vol. 3, No. 2, pp.656-661(2013)
    [38] Sanchez-Illescas, P.J., Carpena, P., Bernaola-Galvan, P., Sidrach-de-Cardona,M., Coronado, A.V., Alvarez,J.L., “An analysis of geometrical shape for PV module glass encapsulation,” Solar Energy Materials and Solar Cells, Vol. 92 (Issue 3), pp. 323-331 (2008)
    [39] Sanchez-Friera, P., Montiel, D., Gil, J.F., Montanez, J.A., Alonso, J.,“Daily Power Output increase of over 3% with the use of Structured glass in monocrystalline silicon,”Photovoltaic Energy Conversion, Vol. 2, pp. 2156-2159 (2006)
    [40] Chen, H. C., Peng, C. Y., Liou, C. J., Lin, Y. H., “Light-Trapping Simulation in Photovoltaic Cells Using Texture Glass,”OPT’08 (2008)
    [41] Blieske, U., Doege,T., Gayout, P., Neander, M., Neuman, D., Prat, A., “Light-trapping in solar modules using extra-white textured glass,”Photovoltaic Energy Conversion, pp. 188-191 (2003)
    [42] Grunow, P., Sauter, D., Hoffmann, V., Huljić, D., Litzenburger, B., Podlowski, L., “The Influenceof Textured Surfacesof Solar Cellsand Modulesonthe Energy ratingof PV Systems,”Proc. of the 20th PVSEC, Barcelona(2005)
    [43] 施建鴻,「太陽能電池的表面抗反射幾何結構分析」,碩士論文,國立臺灣大學,台北 (2010)。
    [44] 胡誌傑,「微奈米結構應用於太陽能電池抗反射層之研究」,碩士論文,國立中山大學,高雄 (2009)。
    [45] 愛發股份有限公司,產品介紹 (Tracepro) http://www.apic.com.tw/introproduct.php?i=98
    [46] 耿繼業,幾何光學,全華科技圖書股份有限公司,新北市 (2013)
    [47] 訊技科技,Tracepro快速學習手冊,五南圖書出版公司 (2006)
    [48] 蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物理雙月刊,第27卷,第5期 (2005)

    QR CODE