簡易檢索 / 詳目顯示

研究生: 古明龍
Ming-Long - Gu
論文名稱: 含有對苯乙炔和降冰片烯二酸酐單元的嵌段共聚物高分子合成與鑑定
Synthesis and characterization of block copolymers containing phenylenevinylene and norbornene dicarboximide units
指導教授: 游進陽
Chin-Yang Yu
口試委員: 邱智瑋
Chih-Wei Chiu
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 112
中文關鍵詞: 開環歧化聚合降冰片烯衍生物環對苯雙烯衍生物嵌段共聚物自組裝
外文關鍵詞: Ring opening metathesis polymerization, norbornene derivatives, paracyclophanediene derivatives, block copolymer, self assembly
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此論文的目標是合成和鑑定以開環岐化聚合所得到具有不同體積比率的嵌段共聚物。為了控制分子量的分布,三代格拉布催化劑作為本論文中的所選用的催化劑。


The aim of this thesis was to synthesis and characterization the polymers containing phenylene vinylene and norbornene dicarboximide units with different volume fraction via ring-opening metathesis polymerization. In order to control the molecular weights and narrow polydispersities of polymers, the fast-initiation ruthenium catalyst such as Grubbs’ 3rd was selected in this thesis.
The block copolymers were examined by 1H nuclear magnetic resonance spectroscopy to investigate the block ratio of the phenylenevinylene and norbornene dicarboximide units. The molecular weights, optical, thermal and electrochemical properties of polymers were also investigated by gel permeation chromatography, differential scanning calorimeter, thermogravimetric analysis, UV-vis absorption, photoluminescence spectroscopy and cyclic voltammetry. The polymers containing phenylenevinylene units can be carried out an isomerization from cis/trans to trans-rich microstructure under an irradiation of UV-lamp (λ=365nm) for 36 hours. The 1H NMR spectra and optical properties of trans-rich polymers were also investigated and compared with the cis/trans ones. The morphology study of cis/trans and trans-rich polymer films was examined by atomic force microscopy (AFM) to observe the self-assembly behavior of the polymers.

Table of content Abstract 1 Chapter 1. Introduction and Aims 4 1. Introduction 5 1.1 Conducting polymers 5 1.2 Synthetic routes for poly(arylenevinylene)s 8 1.3 Block copolymers 14 1.4 Self-assembly behavior of polymers 17 1.5 Ring opening metathesis polymerization 20 1.6 Aim of the project 25 1.7 References 26 Chapter 2. Results and Discussion 28 2.1 Synthesis and characterization of monomers 29 2.1.1 Synthesis of exo-5-Norbornene-2,3-dicarboximide (3) 29 2.1.2 Synthesis of tetraoctyloxy substituted paracyclophanediene (10a) 35 2.2 Synthesis and characterization of polymers 38 2.2.1 Synthesis of poly(N-octyl-exo-norbornene-5,6-dicarboximide) homopolymer P1 38 2.2.2 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene)s homopolymer P2 40 2.2.3 Synthesis of poly(N-octyl-exo-norbornene-5,6-dicarboximide) -b-(2,5-dioctyloxy-p-phenylenevinylene) block copolymer P3-P5 42 2.3 Properties of polymers 46 2.3.1 Molecular weight of polymers 46 2.3.2 Optical properties of polymers 48 2.3.3 Isomerization of the polymers by UV light irradiation 52 2.3.4 Thermal properties of polymers 56 2.3.5 Electrochemical properties of polymers 59 2.3.6 Morphology study of polymer films 61 2.4 References 71 Chapter 3. Conclusion 73 Chapter 4. Experimental 75 4.1 General procedures 76 4.2 Synthesis of the monomers (3) and (10a) 78 4.3 Synthesis of polymers P1-P5 86 Appendix 89 1. 1H, 13C, COSY and HSQC NMR spectra 89 2. Mass spectroscopy 108

[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Chem. Commun., 1977, 578.
[2] H. Shirakawa, Angew. Chem. Int. Ed., 2001, 40, 2574.
[3] W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, N. Sendar Sariciftci, Org. Electron. 2002, 3, 105
[4] S.C. Kim, B. V. K Naidu, S. K. Lee, W. S. Shin, S. H. Jin, S. J. Jung, Y. R. Cho, J. M. Shim, J. K. Lee, J. W. Lee, J. H Kim, Y. S. Gal, Sol. Energ. Mat. Sol. Cells 2007, 91, 460.
[5] G. Saygili, G. Ünal, S. Özçelik, C. Varlikli, Mater. Sci. Eng., B 2012, 177, 921.
[6] U. Salzner, J.B. Lagowski, P.G. Pickup, P.A. Poirier, Synth. Met. 1998, 96, 177.
[7] H.A.M. van Mullekom, J.A.J.M. Vekemans, E.E. Havinga, E.W. Meijer Mater. Sci. Eng., R 2001, 32, 1-40.
[8] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, Friend, R. H. friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
[9] H. Becker, H. Spreitzer, K. Ibrom, W. Kreuder, Macromolecules 1999, 32, 492.
[10] R. A. Wessling, J. Polym. Sci., Polym. Sym. 1985, 72, 55.
[11] A. Kumar, B. E. Eichinger, Macromol. Rapid Commun 1992, 13, 311.
[12] V. P. Conticello, D. L. Gin, R. H. Grubbs, J. Am. Chem. Soc. 1992,114, 9708.
[13] W. W. Wong, J. L. Banal, Encyclopedia of Polymeric Nanomaterials 2013, 1664-1677.
[14] G. Klärner, J.-I. Lee, V. Y. Lee, E. Chan, J.-P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scott, R. D. Miller, Chem. Mater. 1999, 11, 1800.
[15] A. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722
[16] E. Lim, B. J. Jung, H. K. Shim, Macromolecular 2003, 36, 4288.
[17] H. A. Klok, L. Sébastien, Adv. Mater. 2001, 13, 1217.
[18] L. Leiblert, Macromolecular 1980, 13, 1602.
[19] M. W. Matsen, F. S. Bates, Macromolecules 1996, 29, 1091
[20] S. Sutthira, S. Masashi, S. Fumio, Polym. J. 2010, 42, 905.
[21] S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'neal, A. S. Rodgers, S. Shaw, R. Walsh, Chem. Rev. 1969, 69, 279.
[22] R. R. Schrock, Acc. Chem. Res. 1990, 23, 158.
[23] S. Kanaoka, R. H. Grubbs, Macromolecules 1995, 28, 4707.
[24] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett 1999, 1, 953.
[25] T.-L. Choi, C. W. Lee, A. K. Chatterjee, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 10 417
[26] M. S. Sanford, M. Ulman, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 749
[27] C. W. Bielawski, D. Benitez, R. H. Grubbs, Macromolecules 2001, 34, 8610
[28] T. L. Choi, R. H. Grubbs, Angew. Chem. Int. Ed. 2003, 115, 1785.
[29] J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem. Int. Ed. 2002, 41, 4035.
[30] T. L. Choi, R. H. Grubbs, Angew. Chem. Int. Ed. 2003, 42, 1743.
[31] B. Franzus, W. C. Baird Jr, N. F. Chamberlain, T. Hines, E. I. Snyder, J. Am. Chem. Soc. 1968, 90, 3724.
[32] C.Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chem. Eur. J. 2011, 17, 6991.
[33] J. Asrar, Macromolecules 1992, 25, 5150
[34] A. X. Gao, L. Liao, J. A. Johnson, ACS Macro Lett 2014:854
[35] N. V. Rao, M. N. Ganivada, S. Sarkar, H. Dinda, K. Chatterjee, T. Dalui T, et al. Bioconjugate Chem. 2013, 25, 276.
[36] M. Eo, D. Han, M. H. Park, M. Hong, Y. Do, S. Yoo, et al. Eur. Polym. J. 2014, 51, 37.
[37] W. K. Miao, Y. K. Yan, X. L. Wang, Y. Xiao, L. J. Ren, P. Zheng , C. H. Wang, L. X. Ren, W. Wang, ACS Macro Lett 2014, 3, 211.
[38] F. Menk, M. Mondeshki, D. Dudenko, S. Y. Shin, D. Schollmeyer, O. Ceyhun, T. L. Choi, R. Zentel, Macromolecules 2015, 48, 7435.
[39] U. Stalmach, B. de Boer, A. D. Post, P. F. van Hutten, G. Hadziioannou, Angew. Chem. Int. Ed. 2001, 40, 428.
[40] P. M. Cotts, T. M. Swager, Q. Zhou, Macromolecules 1996, 29, 7323.
[41] S. R. Meech, D. Phillips, Journal of Photochemistry 1983, 23, 193.
[42] W. H. Melhuish, J. Phys. Chem. 1961, 65, 229.
[43] Q. H. Chu, Y. Pang, Macromolecules 2003, 36, 4614.
[44] C. Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797.
[45] C. Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chem. Eur. J. 2011, 17, 6991.
[46] S. Shin, K. Y. Yoon, T. L. Choi, Macromolecules 2015, 48, 1390.
[47] K. Y. Yoon, I. H. Lee, K. O. Kim, J. Jang, E. Lee, T. L. Choi, J. Am. Ceram. Soc. 2012, 134, 14291.
[48] N.N Barashkov, D. J. Guerrero, H. J. Olivos, J. P. Ferraris, Synth. Met. 1995, 75, 153.
[49] S. Chuanghote, T. Srikhirin, P. Supaphol, Macromol. Rapid Commun. 2007, 28, 651.
[50] Q. H. Chu, Y. Pang, Macromolecules 2005, 38, 517.
[51] C. Y. Yu, J. W. Kingsley, D. G. Lidzey, M. L. Turner, Macromol. Rapid Commun. 2009, 30, 1889.
[52] S. H. Chen, A. C. Su, S. R. Ha, Macromolecules 2003, 37, 181.

無法下載圖示 全文公開日期 2022/01/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE