簡易檢索 / 詳目顯示

研究生: 楊琇晶
Xiu-Jing Yang
論文名稱: 基於胞嘧啶功能化超分子聚合物的高效細胞培養支架
Highly Efficient Cell Culture Scaffolds Based on Cytosine-Functionalized Supramolecular Polymers
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 賴君義
Juin-Yih Lai
楊銘乾
Ming-Chien Yang
陳建光
Jem-Kun Chen
蔡協致
Hsieh-Chih Tsai
江偉宏
Wei-Hung Chiang
李愛薇
Ai-Wei Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 126
中文關鍵詞: 胞嘧啶組織支架聚環氧氯丙烷聚乙二醇超分子聚合物自組裝可逆交聯網絡細胞貼附
外文關鍵詞: Cytosine, Tissue scaffold, Polyepichlorohydrin, Polyethylene glycol, Supramolecular polymers, Self-assembled, reversible cross-linked networks (RCNs), cell adhesion
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract IV 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 縮減表 XV 第一章 緒論 1 1.1研究背景 1 1.2研究動機 4 2.1組織工程 ( Tissue engineering ) 6 2.1.1組織工程簡史 ( History of tissue engineering ) 6 2.1.2組織工程組成 ( Components of tissue engineering ) 7 2.1.3皮膚組織工程應用 ( Applications of skin tissue engineering ) 9 2.1.4 RGD肽 ( RGD peptide ) 11 2.2超分子聚合物 ( Supramolecular polymers ) 12 2.2.1超分子聚合物聚合機制 ( Supramolecular polymerization mechanisms ) 12 2.2.2超分子聚合物驅動力 ( Driving forces for supramolecular polymers ) 14 2.2.3自癒性超分子聚合物 ( Self-healing supramolecular polymers ) 16 2.3點擊化學 ( Click Chemistry ) 18 2.4聚環氧氯丙烷 ( Polyepichlorohydrin,PECH ) 20 2.5聚乙二醇 ( Polyethylene glycol,PEG ) 21 2.6胞嘧啶 ( 4-amino-3H-pyrimidin-2-one,Cytosine ) 22 3.1研究設計 23 3.2實驗材料 24 3.2.1實驗藥品 24 3.2.2實驗溶劑 27 3.2.3細胞實驗材料 30 3.2.4相關實驗材料 33 3.3實驗儀器與設備參數 34 3.3.1旋轉塗佈機 ( Spin Coaters ) 34 3.3.2流變儀 ( Rheometer ) 34 3.3.3酵素免疫分析儀 ( ELISA Reader ) 34 3.3.4 CO2培養箱 ( CO2 incubators ) 35 3.3.5冷凍離心機 ( Refrigerated Centrifuge ) 35 3.3.6斜式旋轉濃縮機 ( Rotary Evaporation ) 35 3.3.7振盪混合器 ( Vortex Mixer ) 36 3.3.8光學視頻接觸角量測儀 ( Contact angle ) 36 3.3.9熱重分析儀 ( Thermogravimetric analysis,TGA ) 37 3.3.10紫外線光譜儀 ( UV/Vis spectrophotometer,UV/Vis ) 37 3.3.11凝膠滲透層析儀 ( Gel permeation chromatography,GPC ) 38 3.3.12螢光顯微鏡 ( Fluorescence microscope ) 39 3.3.13原子力顯微鏡 ( Atomic Force Microscpoic,AFM ) 39 3.3.14差示掃描量熱儀 ( Differential scanning calorimetry,DSC ) 40 3.3.15高解析度場發射掃描式電子顯微鏡 ( Scanning Electron Microscope,SEM ) 40 3.3.16傅里葉轉換紅外光譜 ( Fourier transform infrared spectroscopy,FTIR ) 41 3.3.17液態核磁共振光譜 ( Nuclear Magnetic Resonance Spectrometer,NMR ) 41 3.3.18多功能高解析X光繞射儀 ( High Resolution X-ray Diffraction,XRD ) 42 3.4實驗合成步驟 43 3.4.1合成Polyepichlorohydrin-Azide ( PECH-N3 ) 43 3.4.2合成 Alkyne-functionalized polyethylene glycol ( PEG-Alkyne ) 44 3.4.3合成1- ( Prop-2-ynyl)-4-acetylaminopyrimidin-2 ( 1H)-one- ( Acetylcytosine-Alkyne) 45 3.4.4合成Polyepichlorohydrin-Cytosine ( PECH-Cytosine ) 46 3.4.5合成Polyepichlorohydrin-Cytosine-Polyethylene glycol ( PECH-Cytosine-PEG ) 47 3.5樣品製備 48 3.5.1薄膜試片製備 48 3.6細胞生物性製備 48 3.6.1磷酸鹽緩衝生理鹽水 ( Phosphate buffered saline,PBS ) 48 3.6.2胰蛋白酶 ( Trypsin-EDTA ) 48 3.6.3細胞培養基 ( Dulbecco's Modified Eagle Medium,DMEM ) 49 3.6.4細胞解凍培養 49 3.6.5細胞培養條件及繼代 49 3.6.6細胞計數 50 3.6.7細胞生物毒性測試 50 3.6.8細胞畫刻製備 51 3.6.9螢光顯微鏡製備 51 3.6.10溶血實驗製備 52 第四章 結果與討論 53 4.1 材料鑑定 54 4.1.1 傅里葉轉換紅外光譜FTIR 56 4.1.2 核磁共振氫譜1H NMR 59 4.1.3 凝膠滲透層析儀GPC 64 4.1.4 熱重分析儀 TGA 66 4.1.5 熱差式分析儀DSC 68 4.1.6 X-射線繞射分析XRD 70 4.2 材料性質分析 72 4.2.1 水接觸角 Contact Angle 72 4.2.2 防水性測試 Water resistance test. 75 4.2.3流變分析Rheometer analysis 79 4.3超分子薄膜表面分析 84 4.3.1掃描電子顯微鏡 SEM 84 4.3.2原子力顯微鏡 AFM 86 4.4超分子薄膜細胞實驗分析 88 4.4.1細胞毒性測試 Cytotoxicity assay 88 4.4.2細胞生長率分析 Cell growth analysis 90 4.4.3細胞畫刻測試 Cell scratch assay 92 4.4.4細胞螢光顯微鏡分析 CLSM analysis 95 4.4.5溶血測試Hemolysis assay 99 第五章 結論 102 第六章 未來展望 103 第七章 參考文獻 104

    [1] M. A. Fonder, G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli, and A. J. Mamelak, "Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings," Journal of the American Academy of Dermatology, vol. 58, no. 2, pp. 185-206, 2008/02/01/ 2008.
    [2] A. J. M. Boulton, "The diabetic foot," Medicine, vol. 47, no. 2, pp. 100-105, 2019/02/01/ 2019.
    [3] D. Van Hoorick, A. Raes, W. Keysers, E. Mayeur, and D. J. Snyders, "Differential modulation of Kv4 kinetics by KCHIP1 splice variants," Molecular and Cellular Neuroscience, vol. 24, no. 2, pp. 357-366, 2003/10/01/ 2003.
    [4] G. D. Winter, "Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig," Nature, vol. 193, no. 4812, pp. 293-294, 1962/01/01 1962.
    [5] G. I. Broughton, J. E. Janis, and C. E. Attinger, "A Brief History of Wound Care," Plastic and Reconstructive Surgery, vol. 117, no. 7S, pp. 6S-11S, 2006.
    [6] D. A. Dubay and M. G. Franz, "Acute wound healing: the biology of acute wound failure," Surgical Clinics of North America, vol. 83, no. 3, pp. 463-481, 2003/06/01/ 2003.
    [7] M. H. Katz, A. F. Alvarez, R. S. Kirsner, W. H. Eaglstein, and V. Falanga, "Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth," Journal of the American Academy of Dermatology, vol. 25, no. 6, Part 1, pp. 1054-1058, 1991/12/01/ 1991.
    [8] J. Li, J. Chen, and R. Kirsner, "Pathophysiology of acute wound healing," Clinics in Dermatology, vol. 25, no. 1, pp. 9-18, 2007/01/01/ 2007.
    [9] O. Stojadinovic et al., "Molecular Pathogenesis of Chronic Wounds: The Role of β-Catenin and c-myc in the Inhibition of Epithelialization and Wound Healing," The American Journal of Pathology, vol. 167, no. 1, pp. 59-69, 2005/07/01/ 2005.
    [10] B. G. Visavadia, J. Honeysett, and M. H. Danford, "Manuka honey dressing: An effective treatment for chronic wound infections," British Journal of Oral and Maxillofacial Surgery, vol. 46, no. 1, pp. 55-56, 2008/01/01/ 2008.
    [11] B.-C. Kim et al., "Fibroblasts from chronic wounds show altered TGF-β-signaling and decreased TGF-β Type II Receptor expression," Journal of Cellular Physiology, vol. 195, no. 3, pp. 331-336, 2003.
    [12] T. A. Wilgus, "Immune cells in the healing skin wound: Influential players at each stage of repair," Pharmacological Research, vol. 58, no. 2, pp. 112-116, 2008/08/01/ 2008.
    [13] P. Martin, "Wound Healing--Aiming for Perfect Skin Regeneration," Science, vol. 276, no. 5309, pp. 75-81, 1997.
    [14] K. A. Bielefeld, S. Amini-Nik, and B. A. Alman, "Cutaneous wound healing: recruiting developmental pathways for regeneration," Cellular and Molecular Life Sciences, journal article vol. 70, no. 12, pp. 2059-2081, June 01 2013.
    [15] S. S. Ramasastry, "Acute Wounds," Clinics in Plastic Surgery, vol. 32, no. 2, pp. 195-208, 2005/04/01/ 2005.
    [16] M. C. Robson, D. L. Steed, and M. G. Franz, "Wound healing: Biologic features and approaches to maximize healing trajectories," Current Problems in Surgery, vol. 38, no. 2, pp. A1-140, 2001/02/01/ 2001.
    [17] V. L. Martins, M. Caley, and E. A. O’Toole, "Matrix metalloproteinases and epidermal wound repair," Cell and Tissue Research, journal article vol. 351, no. 2, pp. 255-268, February 01 2013.
    [18] M. Sand, T. Gambichler, D. Sand, M. Skrygan, P. Altmeyer, and F. G. Bechara, "MicroRNAs and the skin: Tiny players in the body's largest organ," Journal of Dermatological Science, vol. 53, no. 3, pp. 169-175, 2009/03/01/ 2009.
    [19] R. S. Ambekar and B. Kandasubramanian, "Advancements in nanofibers for wound dressing: A review," European Polymer Journal, vol. 117, pp. 304-336, 2019.
    [20] R. Yadav and B. Kandasubramanian, "Egg albumin PVA hybrid membranes for antibacterial application," Materials Letters, vol. 110, pp. 130-133, 2013.
    [21] V. Verma and K. Balasubramanian, "Experimental and theoretical investigations of Lantana camara oil diffusion from polyacrylonitrile membrane for pulsatile drug delivery system," Mater Sci Eng C Mater Biol Appl, vol. 41, pp. 292-300, Aug 1 2014.
    [22] A. Feula et al., "An adhesive elastomeric supramolecular polyurethane healable at body temperature," Chemical Science, 10.1039/C5SC04864H vol. 7, no. 7, pp. 4291-4300, 2016.
    [23] F. Yoshii, Y. Zhanshan, K. Isobe, K. Shinozaki, and K. Makuuchi, "Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing," Radiation Physics and Chemistry, vol. 55, no. 2, pp. 133-138, 1999/06/11/ 1999.
    [24] D. Metcalfe Anthony and W. J. Ferguson Mark, "Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration," Journal of The Royal Society Interface, vol. 4, no. 14, pp. 413-437, 2007/06/22 2007.
    [25] H. Tan, C. Xiao, J. Sun, D. Xiong, and X. Hu, "Biological self-assembly of injectable hydrogel as cell scaffold via specific nucleobase pairing," Chemical Communications, 10.1039/C2CC35449G vol. 48, no. 83, pp. 10289-10291, 2012.
    [26] X. Ye, X. Li, Y. Shen, G. Chang, J. Yang, and Z. Gu, "Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding," Polymer, vol. 108, pp. 348-360, 2017/01/13/ 2017.
    [27] F. Berthiaume, T. J. Maguire, and M. L. Yarmush, "Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges," Annual Review of Chemical and Biomolecular Engineering, vol. 2, no. 1, pp. 403-430, 2011.
    [28] R. E. BILLINGHAM and P. B. MEDAWAR, "The Freezing, Drying and Storage of Mammalian Skin," Journal of Experimental Biology, vol. 29, no. 3, pp. 454-468, 1952.
    [29] I. Yannas, J. Burke, D. Orgill, and E. Skrabut, "Wound tissue can utilize a polymeric template to synthesize a functional extension of skin," Science, vol. 215, no. 4529, pp. 174-176, 1982.
    [30] R. Langer and J. Vacanti, "Tissue engineering," Science, vol. 260, no. 5110, pp. 920-926, 1993.
    [31] L. G. Griffith and G. Naughton, "Tissue Engineering--Current Challenges and Expanding Opportunities," Science, vol. 295, no. 5557, pp. 1009-1014, 2002.
    [32] "What is Tissue Engineering?."
    [33] M. A. Bokhari, G. Akay, S. Zhang, and M. A. Birch, "The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel—polyHIPE polymer hybrid material," Biomaterials, vol. 26, no. 25, pp. 5198-5208, 2005/09/01/ 2005.
    [34] B. Chevallay and D. Herbage, "Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy," Medical and Biological Engineering and Computing, journal article vol. 38, no. 2, pp. 211-218, March 01 2000.
    [35] J. Baier Leach, K. A. Bivens, C. W. Patrick Jr., and C. E. Schmidt, "Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds," Biotechnology and Bioengineering, vol. 82, no. 5, pp. 578-589, 2003.
    [36] C. M. O. B. Murphy, Fergal JLittle, David GrahamSchindeler, Aaron, "
    Cell-scaffold interactions in the bone tissue engineering triad.
    ," European cells & materials, pp. 120-32, 2013.
    [37] D. M. Supp and S. T. Boyce, "Engineered skin substitutes: practices and potentials," Clinics in Dermatology, vol. 23, no. 4, pp. 403-412, 2005/07/01/ 2005.
    [38] M. Martina and D. W. Hutmacher, "Biodegradable polymers applied in tissue engineering research: a review," Polymer International, vol. 56, no. 2, pp. 145-157, 2007.
    [39] P. Y. W. Dankers et al., "Hierarchical Formation of Supramolecular Transient Networks in Water: A Modular Injectable Delivery System," Advanced Materials, vol. 24, no. 20, pp. 2703-2709, 2012.
    [40] A. Feula et al., "An adhesive elastomeric supramolecular polyurethane healable at body temperature," Chem Sci, vol. 7, no. 7, pp. 4291-4300, Jul 1 2016.
    [41] V. Kostopoulos, A. Kotrotsos, and K. Fouriki, "Graphene Nanoplatelet- and Hydroxyapatite-Doped Supramolecular Electrospun Fibers as Potential Materials for Tissue Engineering and Cell Culture," International Journal of Molecular Sciences, vol. 20, no. 7, p. 1674, 2019.
    [42] E. Ruoslahti and M. D. Pierschbacher, "Arg-Gly-Asp: A versatile cell recognition signal," Cell, vol. 44, no. 4, pp. 517-518, 1986/02/28/ 1986.
    [43] B. Jeschke et al., "RGD-peptides for tissue engineering of articular cartilage," Biomaterials, vol. 23, no. 16, pp. 3455-3463, 2002/08/01/ 2002.
    [44] M. Shachar, O. Tsur-Gang, T. Dvir, J. Leor, and S. Cohen, "The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering," Acta Biomaterialia, vol. 7, no. 1, pp. 152-162, 2011/01/01/ 2011.
    [45] W. H. Carothers, "Polymerization," Chemical Reviews, vol. 8, no. 3, pp. 353-426, 1931/06/01 1931.
    [46] T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, and E. W. Meijer, "Supramolecular Polymerization," Chemical Reviews, vol. 109, no. 11, pp. 5687-5754, 2009/11/11 2009.
    [47] L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, "Supramolecular Polymers," Chemical Reviews, vol. 101, no. 12, pp. 4071-4098, 2001/12/01 2001.
    [48] L. Yang, X. Tan, Z. Wang, and X. Zhang, "Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions," Chemical Reviews, vol. 115, no. 15, pp. 7196-7239, 2015/08/12 2015.
    [49] R. Dobrawa, M. Lysetska, P. Ballester, M. Grüne, and F. Würthner, "Fluorescent Supramolecular Polymers:  Metal Directed Self-Assembly of Perylene Bisimide Building Blocks," Macromolecules, vol. 38, no. 4, pp. 1315-1325, 2005/02/01 2005.
    [50] R. Dobrawa and F. Würthner, "Metallosupramolecular approach toward functional coordination polymers," Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, no. 21, pp. 4981-4995, 2005.
    [51] S. Dong, B. Zheng, F. Wang, and F. Huang, "Supramolecular Polymers Constructed from Macrocycle-Based Host–Guest Molecular Recognition Motifs," Accounts of Chemical Research, vol. 47, no. 7, pp. 1982-1994, 2014/07/15 2014.
    [52] F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. H. J. Schenning, "About Supramolecular Assemblies of π-Conjugated Systems," Chemical Reviews, vol. 105, no. 4, pp. 1491-1546, 2005/04/01 2005.
    [53] "Two-in-One Self-Healing Polymers: Supramolecular and Covalent Concepts," ed.
    [54] F. Herbst, D. Döhler, P. Michael, and W. H. Binder, "Self-Healing Polymers via Supramolecular Forces," Macromolecular Rapid Communications, vol. 34, no. 3, pp. 203-220, 2013.
    [55] F. Herbst, S. Seiffert, and W. H. Binder, "Dynamic supramolecular poly(isobutylene)s for self-healing materials," Polymer Chemistry, 10.1039/C2PY20265D vol. 3, no. 11, pp. 3084-3092, 2012.
    [56] R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, and J. Shen, "Functional Supramolecular Polymers for Biomedical Applications," Advanced Materials, vol. 27, no. 3, pp. 498-526, 2015.
    [57] N. Kameta, K. Yoshida, M. Masuda, and T. Shimizu, "Supramolecular Nanotube Hydrogels: Remarkable Resistance Effect of Confined Proteins to Denaturants," Chemistry of Materials, vol. 21, no. 24, pp. 5892-5898, 2009/12/22 2009.
    [58] J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia, "Nanomaterials: Applications in Cancer Imaging and Therapy," Advanced Materials, vol. 23, no. 12, pp. H18-H40, 2011.
    [59] P. Y. W. Dankers, M. C. Harmsen, L. A. Brouwer, M. J. A. Van Luyn, and E. W. Meijer, "A modular and supramolecular approach to bioactive scaffolds for tissue engineering," Nature Materials, vol. 4, no. 7, pp. 568-574, 2005/07/01 2005.
    [60] H. C. Kolb, M. G. Finn, and K. B. Sharpless, "Click Chemistry: Diverse Chemical Function from a Few Good Reactions," Angewandte Chemie International Edition, vol. 40, no. 11, pp. 2004-2021, 2001.
    [61] J. E. Hein and V. V. Fokin, "Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides," Chem Soc Rev, vol. 39, no. 4, pp. 1302-15, Apr 2010.
    [62] "Proceedings of the Chemical Society. December 1964," Proceedings of the Chemical Society, 10.1039/PS9640000385 no. December, pp. 385-434, 1964.
    [63] F. He, B. Luo, S. Yuan, B. Liang, C. Choong, and S. O. Pehkonen, "PVDF film tethered with RGD-click-poly(glycidyl methacrylate) brushes by combination of direct surface-initiated ATRP and click chemistry for improved cytocompatibility," RSC Advances, 10.1039/C3RA44789H vol. 4, no. 1, pp. 105-117, 2014.
    [64] M. Erberich, H. Keul, and M. Möller, "Polyglycidols with Two Orthogonal Protective Groups:  Preparation, Selective Deprotection, and Functionalization," Macromolecules, vol. 40, no. 9, pp. 3070-3079, 2007/05/01 2007.
    [65] S. Brochu and G. Ampleman, "Synthesis and Characterization of Glycidyl Azide Polymers Using Isotactic and Chiral Poly(epichlorohydrin)s," Macromolecules, vol. 29, no. 17, pp. 5539-5545, 1996/01/01 1996.
    [66] B. Hirakawa, "Epichlorohydrin," pp. 431-432, 2014.
    [67] A. C. French, A. L. Thompson, and B. G. Davis, "High-purity discrete PEG-oligomer crystals allow structural insight," Angew Chem Int Ed Engl, vol. 48, no. 7, pp. 1248-52, 2009.
    [68] S. Mirzaei, A. Karkhaneh, M. Soleimani, A. Ardeshirylajimi, H. Seyyed Zonouzi, and H. Hanaee-Ahvaz, "Enhanced chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous PLLA/PEG scaffolds loaded with glucosamine," Journal of Biomedical Materials Research Part A, vol. 105, no. 9, pp. 2461-2474, 2017.
    [69] X. Chen et al., "Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression," NPG Asia Materials, vol. 10, no. 8, pp. 788-799, 2018/08/01 2018.
    [70] G. D. Mogosanu and A. M. Grumezescu, "Natural and synthetic polymers for wounds and burns dressing," Int J Pharm, vol. 463, no. 2, pp. 127-36, Mar 25 2014.
    [71] A. E. Vinogradov, "DNA helix: the importance of being GC-rich," Nucleic Acids Res, vol. 31, no. 7, pp. 1838-44, Apr 1 2003.
    [72] C. S. Nabel, S. A. Manning, and R. M. Kohli, "The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential," ACS Chem Biol, vol. 7, no. 1, pp. 20-30, Jan 20 2012.
    [73] N. G. C. Smith and A. Eyre-Walker, "Synonymous Codon Bias Is Not Caused by Mutation Bias in G+C-Rich Genes in Humans," Molecular Biology and Evolution, vol. 18, no. 6, pp. 982-986, 2001.
    [74] J. L. Sessler et al., "Synthesis and photophysics of a porphyrin–fullerene dyad assembled through Watson–Crick hydrogen bonding," Chemical Communications, 10.1039/B418345B no. 14, pp. 1892-1894, 2005.
    [75] L. Feng et al., "Super-Hydrophobic Surfaces: From Natural to Artificial," Advanced Materials, vol. 14, no. 24, pp. 1857-1860, 2002.
    [76] L. Feng et al., "Petal Effect:  A Superhydrophobic State with High Adhesive Force," Langmuir, vol. 24, no. 8, pp. 4114-4119, 2008/04/01 2008.
    [77] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, "Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets," Langmuir, vol. 18, no. 15, pp. 5818-5822, 2002/07/01 2002.
    [78] B. Bhushan and M. Nosonovsky, "The rose petal effect and the modes of superhydrophobicity," Philos Trans A Math Phys Eng Sci, vol. 368, no. 1929, pp. 4713-28, Oct 28 2010.
    [79] K. Y. Yeh et al., "Observation of the rose petal effect over single- and dual-scale roughness surfaces," Nanotechnology, vol. 25, no. 34, p. 345303, Aug 29 2014.
    [80] K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker, and E. J. Kramer, "Model Transient Networks from Strongly Hydrogen-Bonded Polymers," Macromolecules, vol. 42, no. 22, pp. 9072-9081, 2009/11/24 2009.
    [81] S. E. Lynch, J. C. Nixon, R. B. Colvin, and H. N. Antoniades, "Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors," (in eng), Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 21, pp. 7696-7700, 1987.
    [82] "Standard Practice for Assessment of Hemolytic Properties of Materials."

    無法下載圖示 全文公開日期 2024/08/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE