簡易檢索 / 詳目顯示

研究生: 劉晏瑜
Yen-Yu Liu
論文名稱: 研發新型蝕刻停止層製程用於精準控制氮化鎵垂直共振腔面射型雷射之共振腔長度
Development of a new etch-stop process for precisely controlling the cavity lengths of GaN-based vertical-cavity-surface-emitting lasers
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
蘇忠傑
Jung-Chieh Su
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 蝕刻停止層氟化鋁氫氧化四甲基銨氮化鋁垂直共振腔面射型雷射
外文關鍵詞: Etch-stop layer, Aluminum Fluoride, TMAH, GaN-based vertical-cavity-surface-emitting lasers
相關次數: 點閱:230下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用新型氮化鎵鋁材料系統蝕刻停止層(Etch-stop layer)結構,成功開發兩階段乾蝕刻製程來控制深蝕刻(>1μm),對於單縱模操作的氮化鎵垂直共振腔面射型雷射(Vertical Cavity Surface Emitting Lasers,VCSEL)需要幾微米的垂直共振腔,因此可應用於精準控制氮化鎵VCSEL之共振腔腔長。
我們使用感應耦合電漿反應式離子蝕刻機(Inductively-Coupled Plasma Reactive Ion Etching,ICP-RIE)來進行乾蝕刻,以及配合適當的反應氣體、電漿功率,讓氮化鋁磊晶層與氟離子電漿產生化學反應而形成氟化鋁蝕刻停止層薄膜(Aluminum Fluoride,AlF3),此蝕刻停止層可以使蝕刻率減緩至零來達到阻擋蝕刻的效果,藉此來控制蝕刻深度,而後再使用濕蝕刻的高選擇比特性來移除蝕刻停止層,一方面可以獲得較好的表面均勻性;另一方面則可以移除掉乾蝕刻時的物理轟擊所造成之表面損傷。


In this paper, we adopt new etch stop process for precisely controlling the cavity lengths of GaN-based vertical-cavity-surface-emitting lasers, successfully developing two-stage of the dry etching process which is used to control deep etching(more than 1μm). Fabrication of a vertical-cavity surface-emitting laser(VCSEL) array requires precise control in cavity length which is a couple of microns for single longitudinal mode operation, the new etch stop process can be applied to precisely control the cavity lengths of GaN-based vertical-cavity-surface-emitting lasers.
Inductively-coupled plasma reactive ion etching(ICP-RIE) is used for dry etching, with the appropriate reactant gas and plasma power to generate the chemical reaction between AlN and fluorine plasma. This forms AlF3 etch-stop layer which can dramatically decrease the etching rate to zero in order to form the etch-stop layer, so we can thereby control the depth of etching. After ICP-RIE, we adopt wet etching to remove the etch-stop layer by its high selective ratio. This process allows us to gain better root mean square roughness(RMS), in addition, we can also remove the damage on the surface which is caused by physical bombardment while conducting a dry etching process.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 導論 1 1.1 氮化鎵材料簡介 1 1.2 氮化鎵極化效應 6 1.3 垂直共振腔面射型雷射文獻回顧 8 1.4 研究動機 11 第二章 垂直共振腔面射型雷射介紹 13 2.1 半導體雷射基本特性 13 2.2 垂直共振腔面射型雷射原理 17 2.3 共振腔特性 18 2.3.1 共振腔介紹 18 2.3.2 共振腔長度與均勻度對雷射特性的影響 19 2.4 布拉格反射鏡 22 2.4.1 布拉格反射鏡介紹 22 2.4.2 布拉格反射鏡結構設計 24 2.5 電流侷限結構 26 第三章 氮化鎵鋁材料系統蝕刻停止層原理 30 3.1 氮化鎵鋁材料系統蝕刻停止層文獻回顧 30 3.2 乾式蝕刻 32 3.3 濕式蝕刻 35 3.4 垂直共振腔面射型雷射之磊晶層設計 37 3.5 垂直共振腔面射型雷射蝕刻停止層實驗設計 38 3.5.1 晶圓蝕刻停止層設計 38 3.5.2 乾式蝕刻製程(Dry etching process) 39 3.5.3 濕式蝕刻製程(Wet etching process) 42 3.6 製程儀器介紹 43 3.6.1 射頻濺鍍機(RF Sputter) 43 3.6.2感應耦合電漿反應式離子蝕刻機(Inductively-coupled plasma reactive ion etching, ICP-RIE) 45 3.7 量測儀器介紹 47 3.7.1 場發射掃描式電子顯微鏡(Field-emission scanning electron microscope) 47 3.7.2 X光光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS) 49 3.7.3 原子力顯微鏡(Atomic Force Microscope,AFM)53 第四章 結果與討論 56 4.1 乾式蝕刻至蝕刻停止層實驗 56 4.1.1 不同氣體比例與ICP-RIE功率之蝕刻率比較 56 4.1.2 兩階段製程之蝕刻深度與蝕刻時間比較 57 4.1.3 蝕刻停止層表面結構分析 62 4.2 TMAH濕式蝕刻 65 4.2.1 TMAH濕式蝕刻氮化鎵 65 4.2.2 TMAH移除蝕刻停止層 66 4.2.3 蝕刻停止層移除後之乾式蝕刻 70 4.3 結論 71 第五章 未來展望 72 參考文獻 73

[1] J. I. Pankove. (1998). Gallium Nitride (GaN) I. Semiconductors and Semimetals, 50(1), 517.
[2] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AIN-coated sapphire substrates,” Applied Physics Letters, vol. 42, pp. 427, 1983.
[3] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, K. Oki, “Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE,” Journal of Crystal Growth, vol. 115, pp. 628– 633, 1991.
[4] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy,” Applied Physics Letters, vol. 84, pp. 452, 2004.
[5] E. Fred. Schubert. (2006). Light emitting diode. New York: Cambridge University Press.
[6] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, pp. 2112-2114, 1989.
[7] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. 139-142, 1992.
[8] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, et al., “Violet InGaN/GaN/AlGaN-Based Laser Diodes with an Output Power of 420 mW,” Japanese Journal of Applied Physics, vol. 37, pp. 627-629, 1998.
[9] O.Ambacher, B. Foutz, J. Smart, M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Japanese Journal of Applied Physics, vol.85, pp. 334, 1999.
[10] K. Iga, Laboratory Notebook, 1977.
[11] H. Soda, K. Iga, C. Kitahara, Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Japanese Journal of Applied Physics, vol. 18, pp. 2329-2340, 1979.
[12] Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujii, H. Mori, J. Hashimoto, M. Shimazu, A. Yamaguchi, and T. Katsuyama, “Long-Wavelength GaInNAs Vertical-Cavity Surface-Emitting Laser With Buried Tunnel Junction,” IEEE J. Select. Topics Quantum Electron., vol. 15, pp. 838, 2009.
[13] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, “An optically pumped GaN–AlGaN vertical cavity surface emitting laser,” Applied Physics Letters, vol. 69, pp. 1-3, 1996.
[14] C.-C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, et al., “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN∕GaN and Ta2O5∕SiO2 distributed Bragg reflector,” Applied Physics Letters, vol. 87, pp. 081105-081105-3, 2005.
[15] J.-T. Chu, T.-C. Lu, M. You, B.-J. Su, C.-C. Kao, H.-C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Applied Physics Letters, vol. 89, pp.121112-121112-3, 2006.
[16] T.-C. Lu, C.-C. Kao,H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Applied Physics Letters, vol. 92, pp. 141102-141102-3, 2008.
[17] T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, et al., “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Applied Physics Letters, vol. 97, pp. 071114-071114-3, 2010.
[18] Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Applied Physics Express, vol. 1, pp. 121102, 2008.
[19] K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate,” Applied Physics Express, vol. 2, pp. 052101, 2009.
[20] D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, et al., “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Applied Physics Express, vol. 4, pp. 072103, 2011.
[21] Delai Zhou, and Luke J. Mawst, “High-Output-Power Single-Higher-Order Transverse Mode VCSEL with Shallow Surface Relief,” IEEE J. Quantum Electron., pp. 38, 2002.
[22] M. Miller, M. Grabherr, R. King, R. Jager, R. Michaalzik, and K. J. Ebeling, “Improved output performance of high-power VCSELs,” Selected Topics in Quantum Electronics, vol. 7, no. 2, pp. 210-216, 2001.
[23] A. Haglund, J. S. Gustavsson, J. Vukusi´c, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett, vol. 16, pp. 368–370, 2004.
[24] M. S. Alias, S. Shaari, P. O. Leisher, and K. D. Choquette, “Single transverse mode control of VCSEL by photonic crystal and trench patterning,” Photonics and Nanostructures-Fundamentals and Applications, vol. 8, pp. 38–46, 2010.
[25] A.-S. Gadallah, R.Michalzik, “High-Output-Power Single-Higher-Order Transverse Mode VCSEL With Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 23, pp. 1040–1042, 2011.
[26] D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity-surface-emitting lasers by current injection at room temperature,” Applied Physics Express, vol. 4, 072103, 2011.
[27] S. Izumi, N. Fuutagawa, T. Hamaguchi, M. Murayama, M. Kuramoto, and H. Narui, “Room-temperature continuous-wave operation of GaN-based vertical-cavity-surface-emitting lasers fabricated using epitaxial lateral overgrowth,” Applied Physics Express, vol. 8, 062702, 2015.
[28] 王婉瑄,「以奈米壓印微影技術研製氮化鎵分佈回饋式雷射」,國立台灣科技大學光電工程所碩士學位論文,新竹,2004
[29] 謝永龍,「氮化鎵面射型發光元件的製造與光學特性」,國立交通大學電子工程所碩士學位論文,台北,2015
[30] 胡文貴,「垂直諧振腔面射型雷射的特性分析與量測」,國立台北科技大學電機工程所碩士學位論文,台北,2007
[31] 張棋傑,「氮化鎵垂直共振腔面射型雷射與發光二極體之製造與特性量測」,國立台灣科技大學電子工程所碩士學位論文,台北,2015
[32] D. Buttari, A. Chini, A. Chakraborty, L. Mccarthy, H. Xing, T. Palacios, L. Shen, S. Keller, and U. K. Mishra, “Selective Dry Etching of GaN over AlGaN in BCl3/SF6 mixtures,” High Performance Devices, Vol. 14, pp. 756-761, 2004.
[33] Da Chen, Dong Xu, Jingjing Wang, Bo Zhao, Yafei Zhang, “Dry etching of AlN films using the plasma generated by fluoride,” ELSEVIER, Vacuum 83, pp. 282–285, 2009.
[34] S. Huang, H. Chen, and K. J. Chen, “Surface properties of AlxGa1-xN/GaN heterostructures treated by fluorine plasma: an XPS study,” Phys. Status Solidi C 8, pp. 2200–2203, 2011.
[35] Bin Lu, Min Sun, Tomás Palacios, “An Etch-Stop Barrier Structure for GaN High-Electron-Mobility Transistors,” IEEE Electron Device Letters, VOL. 34, pp. 369-371, 2013.
[36] Retsuo Kawakami, Masahito Niibe, Yoshitaka Nakano, Tatsuo Shirahama, Shodai Hirai, Takashi Mukai, “Comparison between AlGaN surfaces etched by carbon tetrafluoride and argon plasmas: Effect of the fluorine impurities incorporated in the surface,” ELSEVIER, Vacuum 136, pp. 28-35, 2017.
[37] Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.H. Kuo, C.S. Chang and S.C. Shei, “ICP etching of sapphire substrates,” Opt. Mater., 27, 1171, 2005.
[38] Da Chen, Dong Xu, Jingjing Wang, Bo Zhao, Yafei Zhang, “Dry etching of AlN films using the plasma generated by fluoride,” ELSEVIER, Vacuum 83, pp. 282–285, 2009.
[39] 廖彥超,「有無電流阻擋層與不同透明導材料厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011
[40] 甯榮椿,「使用感應式耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究與SC1溶液對氮化鈦溼蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010
[41] 黃彥翔,「氮化鎵表面粗糙化技術研發與相關太陽能電池特性之探討」,台灣科技大學電子工程所碩士學位論文,台北,2013
[42] 游采鳳,「The growth of Bi on Ag(111) studied with STM, LEED and XPS」,國立中央大學物理學系碩士學位論文,桃園,2015
[43] Partha Pratim Das, Anurag Roy, Shruti Agarkar, Parukuttyamma Sujatha Devi, “Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells, ” ELSEVIER, Volume 154, pp. 303-313, 2018.
[44] 曾繁根,「使用AFM觀察甲醇催化反應奈米級〖CO〗_2氣泡產生與脫氧」,國立清華大學工程與系統科學所碩士學位論文,新竹,2010
[45] Seiko Instruments Inc. (2002). Nanopics operation manual NPX200-M002 version 1.0. Japan: Seiko Instruments Inc.
[46] Dong-Hyeok Son, Young-Woo Jo, Chul-Ho Won, Jun-Hyeok Lee, Jae Hwa Seo, Sang-Heung Lee, Jong-Won Lim, Ji Heon Kim, In Man Kang, Sorin Cristoloveanu, Jung-Hee Lee, “Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching,” ELSEVIER, vol. 141 pp. 7–12, 2018.
[47] 李明修,「濕式清洗製程改善快閃記憶體金屬佈線與通道連接電阻降低研究」,國立交通大學半導體材料與製程設備學程碩士學位論文,新竹,2010

QR CODE