簡易檢索 / 詳目顯示

研究生: 林泰諺
Tai-Yan Lin
論文名稱: 同步水解醱酵程序生產乳酸之模式建立與最適化
Modeling and optimization of lactic acid production via a simultaneous saccharification and fermentation process
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 李豪業
Hao-Yeh Lee
王逢盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 163
中文關鍵詞: 同步水解醱酵程序乳酸
外文關鍵詞: lactic acid
相關次數: 點閱:236下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的目的找出一組可精確描述乳酸生產過程的數學模式,使用基因演算法去求得數學模式中的參數,接著將最佳的數學模式應用文獻中的最佳化方式找出最適合的反應器與最適化的操作條件,研究各種不同的目標函數所適用的反應器與進料流率、出料流率、進料濃度、進料改變時間、出料改變時間,使用的搜尋方法是使用基因演算法,在真實程序中出現不可量測的干擾,可透過程序控制來解決這問題,使用比例積分控制和適應性控制策略達到最佳的產量。


The purpose of this study to find a set of lactic acid production process can be accurately described by a mathematical model, parameter of model were obtained using Genetic Algorithms. Next, the best application of optimized mathematical models in the literature to identify the most suitable reactor and optimal operating conditions. According to different objective function to find the best operating model, feed flow rate, outflow rate, feed concentration, switching times for feed flow and switching times for outflow, stages are optimized by GA. In the plant, they have several disturbances, which are not measured and predicted. The problems are solved by process control. The aim is which achieved the best product amount using by proportional integral control and adaptive control strategies.

摘要 I ABSTRACT II 目錄 III 表目錄 VI 圖目錄 IX 第1章 緒論 1 1.1研究背景 1 1.2研究動機 1 1.3文獻回顧 1 第2章 同步水解醱酵程序 6 2.1同步水解醱酵程序介紹 6 2.2反應器的介紹 6 2.2.1批次醱酵反應器 6 2.2.2饋料批次醱酵反應器 7 2.2.3 連續式操作反應器 7 2.2.4週期性操作反應器 8 2.3 模擬YEN & KANG (2010)所提出數學模式 8 第3章 模式參數估計 16 3.2參數估計方法 16 3.2.1模式一 18 3.2.2模式二 20 3.2.3模式三 21 3.2.4模式四 22 3.3 修改後模擬結果比較 43 第4章 程序最佳化 48 4.1前言 48 4.2連續式醱酵數學模式 49 4.3最適化進料策料 51 4.3.1限制條件 51 4.3.2搜尋範圍 52 4.4不同目標最適化進料策略 53 4.4.1生產力目標函數的最適化進料策略 53 4.4.2產率目標函數的最適化進料策略 54 4.4.3產物累積量目標函數的最適化進料策略 55 4.4.4修正型生產力目標函數的最適化進料策略 56 4.4.5四種目標函數適合的單一反應器與最適合的串聯反應器 57 4.5多目標最適化 78 4.5.1 生產力與產率的雙目標最適化策略 78 4.5.2 生產力與澱粉進料量的雙目標最適化策略 79 4.5.3 產率與澱粉進料量的雙目標最適化策略 79 4.6 梯度型與非梯度型的方法處理最適化問題 94 第5章 控制器設計 97 5.1前言 97 5.2參數靈敏度分析 97 5.3 PI控制器 108 5.4適應性控制 111 第6章 結論 154 參考文獻 156 附錄 161

[中文]
1. 賴松宜,「聚羥基丁酸酯製造程序之建模與最佳化」,碩士論文,台灣科技大學,台北(2011)。
2. 許智凱,「研發乳酸連續醱酵製程」,碩士論文,台灣科技大學,台北(2010)。

[英文]
1. Yen, H. W.; Kang, J. L., Lactic acid production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus. Bioprocess Biosyst Engineering 2010, 33, (9), 1017-23.
2. Kim, D. H.; Kim, M. S., Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresource Technology 2013, 127, 267-274.
3. Akao, S.; Maeda, K.; Nakatani, S.; Hosoi, Y.; Nagare, H.; Maeda, M.; Fujiwara, T., Comparison of simultaneous and separate processes: saccharification and thermophilic L-lactate fermentation of catch crop and aquatic plant biomass. Environmental Technology 2012, 33, (13), 1523-1529.
4. Jun Luo, L. X.; Jianping Lin; Cen*, P., Kinetics of Simultaneous Saccharification and Lactic Acid Fermentation Processes. Biotechnol. Prog 1997, 762 -767.
5. van Zyl, J. M.; van Rensburg, E.; van Zyl, W. H.; Harms, T. M.; Lynd, L. R., A kinetic model for simultaneous saccharification and fermentation of Avicel with Saccharomyces cerevisiae. Biotechnology and Bioengineering 2011, 108, (4), 924-33.
6. Huang, L. P.; Jin, B.; Lant, P.; Zhou, J., Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal 2005, 23, (3), 265-276.
7. Hofvendahl, K.; Hahn-Hagerdal, B., Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology 2000, 26, (2-4), 87-107.
8. Den Haan, R.; McBride, J. E.; Grange, D. C. L.; Lynd, L. R.; Van Zyl, W. H., Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme and Microbial Technology 2007, 40, (5), 1291-1299.
9. Hasunuma, T.; Kondo, A., Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry 2012, 47, (9), 1287-1294.
10. Kang, H. W.; Kim, Y.; Kim, S. W.; Choi, G. W., Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess and Biosystems Engineering 2012, 35, (1-2), 115-22.
11. Podkaminer, K. K.; Shao, X.; Hogsett, D. A.; Lynd, L. R., Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 degrees C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnology and Bioengineering 2011, 108, (6), 1268-78.
12. Shin, D.; Yoo, A.; Kim, S. W.; Yang, D. R., Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. Journal of Microbiology and Biotechnology 2006, 16, (9), 1355-1361.
13. Jones, K. D.; Kompala, D. S., Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. Journal of Biotechnology 1999, 71, (1-3), 105-131.
14. Gadgil, C. J.; Bhat, P. J.; Venkatesh, K. V., Cybernetic model for the growth of Saccharomyces cerevisiae on melibiose. Biotechnology Progress 1996, 12, (6), 744-750.
15. Lai, S.-Y.; Kuo, P.-c.; Wu, W.; Jang, M.-F.; Chou, Y.-S., Biopolymer production in a fed-batch reactor using optimal feeding strategies. Journal of chemical Technology and Biotechnology 2013.
16. Abdallah Bouguettoucha; Balannec, B.; Amrane, A., Unstructured Models for Lactic Acid Fermentation –A Review. A. BOUGUETTOUCHA et al.: Models for Lactic Acid Fermentation. Food Technology and Biotechnology 2009, 49 (1) 3–12
17. Altiok, D.; Tokatli, F.; Harsa, S., Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). Journal of chemical Technology and Biotechnology 2006, 81 1190–1197.
18. Aiba, S.; Shoda, M.; Nagatani, M., Kinetics of product inhibition in alcohol fermentation. Biotechnology and Bioengineering 1969, 10 845–864.
19. Ajbar, A.; Fakeeha, A. H., Static and dynamic behavior of a class of unstructured models of continuous bioreactors with growth associated product. Bioprocess and Biosystems Engineering 2002, 25, (1), 21-27.
20. Dutta, S. K.; Mukherjee, A.; Chakraborty, P., Effect of product inhibition on lactic acid fermentation: Simulation and modelling. Applied Microbiology and Biotechnology 1996, 46, (4), 410-413.
21. Baati, L.; Roux, G.; Dahhou, B.; Uribelarrea, J. L., Unstructured modelling growth of Lactobacillus acidophilus as a function of the temperature. Mathematics and Computers in Simulattion 2004a, 65 137–145.
22. Gonçalves, L. M. D.; Xavier, A. M. R. B.; Almeida, J. S.; Carrondo, M. J. T., Concomitant substrate and product inhibition kinetics in lactic acid production. Enzyme and Microbial Technology 1991, 13, (4), 314-319.
23. Akerberg, C.; Hofvendahl, K.; Zacchi, G.; Hahn-Hagerdal, B., Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole wheat flour. Applied Microbiology and Biotechnology 1998,49 682–690.
24. Andrews, J. F., A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering 1968, 10, (6), 707-723.
25. Adomian, G., Nonlinear Stochastic Operator Equations. Academic Press, New York, NY, USA. 1986.
26. Andric, P.; Meyer, A. S.; Jensen, P. A.; Dam-Johansen, K., Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Applied Microbiology and Biotechnology 2010, 160, (1), 280-97.
27. Patel, M. A.; Ou, M. S.; Ingram, L. O.; Shanmugam, K. T., Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnology Progress 2005, 21, (5), 1453-1460.
28. Luedeking, R.; Piret, E. L., Piret, A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Joural of Biochemical and Microbiological Technology and Engineering 1959,1 393–412.
29. Rogers, P. L.; Bramall, L.; McDonald, I. J., Kinetic analysis of batch and continuous culture of Streptococcus cremoris HP1, Canadian Joural of Microbiology 1978,24 372–380.
30. Baati, L.; Roux, G.; Dahhou, B.; Uribelarrea, J. L., Unstructured modelling growth of Lactobacillus acidophilus as a function of the temperature. Mathematics and Computers in Simulattion 2004b, 65 137–145.
31. Mandli, A. R.; Modak, J. M., Evolutionary Algorithm for the Determination of Optimal Mode of Bioreactor Operation. Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India 2011.
32. Seborg, D. E.; Mellichamp, D. A.; Edgar, T. F.; Doyle, F. J., Process Dynamics and Control. John Wiley & Sons: 2010.

QR CODE