簡易檢索 / 詳目顯示

研究生: 邱奕鐙
Yi-Deng Chiou
論文名稱: 寬廣工作電位窗口圖案化碳微管之微型化電容器
Miniature electrochemical capacitors of patterned carbon nanotubes with a wide working potential window
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 李奎毅
Kuei-Yi Lee
余子隆
Tzyy-Lung Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 185
中文關鍵詞: 超高電容器奈米碳管軟性基板有機電解質膠態電解質離子液體
外文關鍵詞: Ultracapacitor, Carbon nanotubes, Flexible substrate, organic electrolyte, gel electrolyte, ionic liquid
相關次數: 點閱:377下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討碳微管微型化超高電容器製作,並分析三種微型化超高電容器分別在在目前市面上常用的1M LiPF6,EC:DMC=1:1(v/v)有機電解液,PVdF-HFP為基質的膠態電解液,和1M TEABF4/PC離子液體之不同工作電位窗口的特性。此三種超高電容器特色為垂直陣列碳微管指叉式電極,電容器電極圖型製作是經由黃光微影蝕刻、化學氣相沉積法。梳狀電極的指梳間隔為20 μm,移轉前我們能先在表面濺鍍一層金以利電流收集,再將電極反轉並移轉至可饒式的電性膠帶上,以CNT_CNTx代表不同電容器。我們更進一步的利用循環伏安法、交流阻抗、恆電流充放電和穩定測試測量其電化學特性。
利用1M LiPF6,EC:DMC=1:1(v/v)有機電解液測量的對稱性電容器 CNT_CNTo可以被操作至寬廣的電位窗口4.0 V,由於電解液具有良好的離子移動性,因此較低等效串連電阻(ESR)(1.53  cm2)。結合了寬廣電位窗口與高導電率電解液使CNT_CNTo電容器具有良好的電化學表現,電流密度30 Ag-1充放電情況下,4.0 V電位窗口,CNT_CNTo電容器放電能量密度和功率密度分別為19.7 Whkg-1、57.54 kWkg-1;PVdF-HFP為基質的膠態電解質也可以操作至4.0 V,但CNT_CNTg電容器ESR值稍高(1.97  cm2)。雖然膠態電解液阻抗值較高,但膠態電解質具有固定且防止CNT電極之間短路的優點。電流密度30 Ag-1充放電情況下,4.0 V電位窗口,CNT_CNTg電容器放電能量密度和功率密度分別為16.5 Whkg-1、55.5 kWkg-1。1M TEABF4/PC離子液體的電壓窗口為2.8 V,相對於另外兩個電容器電位窗口較狹窄且CNT_CNTi的ESR值較高(2.45  cm2),因此其電容器能量與功率密度相較於前面兩種的電容器低。電流密度10 Ag-1充放電情況下,2.8 V電位窗口,CNT_CNTi電容器放電能量密度和功率密度分別為2.0 Wh kg-1、15.2 kWkg-1。


We have investigated preparation and properties of three miniaturized ultracapacitors with different working potential windows, which are governed by the commercial available electrolytes of 1M LiPF6,EC:DMC=1:1(v/v) organic electrolyte, PVdF-HFP-based gel electrolyte, and 1M TEABF4/PC ionic liquid. The three ultracapacitors are featured with interdigital electrodes of vertically aligned carbon nanotubes (CNTs), patterned and grown using the standard technologies of photolithography and chemical vapor deposition. The comb-like electrodes of 20 μm spacing, denoted as CNT_CNTx, are later sputtered with gold, inverted, and transferred to a plastic tape, which allows the capacitor be integrated with flexible electronics. We further measured the electrochemical properties using using cyclic voltammetry, impedance spectroscopy, galvanostatic charge/ discharge test, and stability test.

With the organic electrolyte of 1M LiPF6,EC:DMC=1:1(v/v), the symmetric capacitor CNT_CNTo can be operated in a wide potential window 4.0 V. And the sufficient ion conductivity of this electrolyte gives a minimum equivalent series resistance (ESR) 1.53  cm2. Combination of wide potential window and conductive electrolyte makes possible the best performance of CNT_CNTo. At a current density of 30 Ag-1 and a window 4.0 V, the CNT_CNTo cell discharges at a power level 57.5 kWkg-1 with energy density 19.7 Wh kg-1. The interdigital CNT electrodes in the PVdF-HFP-based gel electrolyte can also be operated in the potential widow 4.0 V, but the ESR value of this capacitor CNT_CNTg is slightly higher, 1.97  cm2. Although the resistance of gel electrolyte is slightly larger, but the gel has the advantage of preventing the probable short circuiting between two opposing CNT electrodes. The cell CNT_CNTg, at current density of 30 Ag-1 and a window 4.0V, discharges at a power level 55.5 kWkg-1 with energy density 16.5 Wh kg-1. The potential window of 1M TEABF4/PC ionic liquid of CNT_CNTi is 2.8 V, which is relatively narrow compared with the other two capacitors. And the ESR value of CNT_CNTi is also higher, 2.45  cm2. Hence its capacitor power and energy densities are inferior to those of the previous two cells. The CNT_CNTi cell, at current density 10 A g-1 and a window 2.8 V, discharges at a power level 15.2 kWkg-1 with energy density 2.0 Wh kg-1.

摘要 I Abstract III 目錄 V 第一章 緒論 1 第二章 文獻回顧與理論基礎 4 2.1 能量儲存裝置概述 4 2.1.1 電容器之分類 7 2.2 超高電容器 (Ultracapacitor) 10 2.2.1 超高電容器之電極材料 11 鋰離子電解液之發展與應用 13 2.3.1 有機溶劑 13 2.3.2 鋰鹽 16 2.3.3 膠態高分子電解質 19 2.3.4 碳材/鋰離子作用與預鋰化(pre-lithiated) 22 2.3.5 電雙層電容器與鋰離子電容器(LICs) 28 2.4 離子液體電解質(RTILs) 32 有機電解液下之超級電容器 39 2.3.1 高電壓窗口電雙層電容器之研究及探討 39 2.3.2 高能量密度的混成電容器 43 2.3.3 離子液體在電雙層電容器的應用 46 第三章 實驗方法及步驟 49 3.2 電極材料之製備 53 3.2.1 基材之清洗 53 3.2.2 黃光微影製程 (Photolithography) 53 3.2.3 CVD法成長奈米碳管 56 3.2.4 電極之轉印 58 3.2.5 試片之封裝 61 3.2.6 電容器元件量測前步驟 62 3.3 PVdF-HFP為基質的膠態電解質製備流程 64 3.3 電極材料之特性分析與電性分析 66 3.3.1 表面結構分析 66 3.3.2 電化學性質分析 66 第四章 結果與討論 69 4.1 奈米碳管電極形貌 69 4.2 鋰離子有機電解液之指叉式電容器分析 76 4.2.1 鋰離子有機電解液之穩定電壓窗口分析 76 4.2.2 電極循環伏安分析 78 4.2.2.1 電極之穩定電壓窗口循環伏安分析 79 4.2.2.2 電極循環伏安分析 82 4.2.3 恆電流充、放電分析 89 4.2.3.1 對稱式電容器恆電流充、放電分析 90 4.2.3.2 對稱式電容器充放時個別電極之行為 99 4.2.3 交流阻抗分析 105 4.2.4 充放循環穩定性分析 108 4.4 PVdF-HFP膠態電解液之指叉式電容器分析 116 4.3.1 電極循環伏安分析 116 4.3.1.1 電極之穩定電壓窗口循環分析 117 4.4.1.2 電極循環伏安分析 120 4.3.2 恆電流充、放電分析 127 4.3.2.1 對稱式電容器恆電流充、放電分析 127 4.3.3 交流阻抗分析 138 4.3.4 充放循環穩定性分析 141 4.4 不同電解質之對稱性電容器比較 149 4.5 四乙基四氟硼酸銨離子液體之指叉式電容器分析 156 4.5.1 四乙基四氟硼酸銨離子液體之穩定電壓窗口分析 156 4.5.2 電極循環伏安分析 158 4.5.2.1 電極之穩定電壓窗口循環伏安分析 158 4.5.2.2 電極循環伏安分析 161 4.5.3 恆電流充、放電分析 165 4.5.3.1 對稱式電容器恆電流充、放電分析 165 4.5.4 交流阻抗分析 172 4.5.5 充放循環穩定性分析 175 第五章 結論 178 參考文獻 182

[1] 新エネルギー・産業技術総合開発機構: リチウム二次電池構成材料開発の状態と課題.2007.
[2] 林素琴: 鋰電池材料發展分析工研院電子報2009.
[3] S.M. Lambert, V. Pickert, J. Holden, X He, W Li., Comparison of Supercapacitor and Lithium-Ion Capacitor Technologies for Power Electronics Applications. Institute of Electrical and Electronics Engineers. 2010.
[4] Electropaedia, "http://www.mpoweruk.com/performance.htm."
[5] B. E. Conway, Electrochemical Super capacitors, Kluwer-Plenum, New York .1999.
[6] Kang Xu., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemcial Reviews, vol. 104, pp. 4303-4417 , 2004.
[7] L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O_Mahony, E. I. Rogers, and D. S. Silvester., Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents. FOCUS REVIEWS, vol. 5,pp 202-230 , 2010.
[8] A. Burke, "Ultracapacitors: why, how, and where is the technology," Journal of Power Sources, vol. 91, pp. 37-50, 2000.
[9] J. R. Miller, Simon, P., "Materials science: Electrochemical capacitors for energy management," Science, vol. 321, pp. 651-652, 2008.
[10] J. R. Miller, Burke, A.F., "Electrochemical capacitors: Challenges and opportunities for real-world applications," Electrochemical Society Interface, vol. 17, pp. 53-57, 2008.
[11] M. Winter, Brodd, R.J., "What are batteries, fuel cells, and supercapacitors?," Chemical Reviews, vol. 104, pp. 4245-4269, 2004.
[12] B. E. Conway, In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New York: Kluwer-Plenum 1999.
[13] Electropaedia, "http://www.mpoweruk.com/performance.htm."
[14] NUINTEK, "http://www.nuin.co.kr."
[15] S. K. Bhattacharya, Tummala, R.R. , "Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates," Journal of Materials Science: Materials in Electronics, vol. 11, pp. 253-268, 2000.
[16] H. Windlass, Raj, P.M., Balaraman, D., Bhattacharya, S.K., Tummala, R.R., et al., "Colloidal processing of polymer ceramic nanocomposite integral capacitors," Transactions on Electronics Packaging Manufacturing, vol. 26, pp. 100-105, 2003.
[17] P. Kim, Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R., Perry, J.W., "Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength," Advanced Materials, vol. 19, pp. 1001-1005, 2007.
[18] S. Hadzi-Jordanov, Angerstein-Kozlowska, H., Vukovic, M., Conway, B.E., "REVERSIBILITY AND GROWTH BEHAVIOR OF SURFACE OXIDE FILMS AT RUTHENIUM ELECTRODES," Journal of the Electrochemical Society, vol. 125, pp. 1471-1480, 1978.
[19] B. E. Conway, "Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage," Journal of the Electrochemical Society, vol. 138, pp. 1539-1548, 1991.
[20] X. Zhao, et al., "The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices," Nanoscale, vol. 3, p. 839, 2011.
[21] A. Burke, Arulepp, M., Electrochem. Soc. Proc., vol. 2001-21, p. 576, 2001.
[22] E. Frackowiak and F. Béguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001.
[23] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[24] Q.-L. Chen, et al., "Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors," Electrochimica Acta, vol. 49, pp. 4157-4161, 2004.
[25] A. B. Dalton, Collins, S., Muñoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., "Super-tough carbon-nanotube fibres " Nature, vol. 423, p. 703, 2003.
[26] S. C. Niu, E.K., Hoch, R., Moy, D., Tennent, H., "High power electrochemical capacitors based on carbon nanotube electrodes," Applied Physics Letters, vol. 70, pp. 1480-1482, 1997.
[27] K. H. An, Kim, W.S., Park, Y.S., Moon, J.-M., Bae, D.J., Lim, S.C., Lee, Y.S., , "Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes," Advanced Funtional Materials, vol. 11, pp. 387-392, 2001.
[28] Brian J. Landi, Matthew J. Ganter, Cory D. Cress, Roberta A. DiLeo and Ryne P. Raffaelle., Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, vol. 2, pp. 549-712, 2009.
[29] Abraham KM., Recent developments in secondary lithium battery technology.Journal of Power Sources 1985, 14:179-191.
[30] V. Arcella, A. Sanguineti, E. Quartarone, P. Mustarelli J. Power Sources 790, 81-82, 1999.
[31] K. M. Abraham, M. Alamgir, Solid State Ionics, 70, 20, 1994.
[32] 洪傳獻,Chemistry, 57, 175, 1999.
[33] C. G. Wu, C. H. Wu, M. I. Lu, H. J. Chuang, Journal of Applied Polymer Science, 99, 1530, 2006.
[34] J. Y. Song, Y. Y. Wang , C. C. Wan, Journal of Power Sources, 77, 183, 1999.
[35] J. J. Fontenella, M. C. Wintergill, J. P. Calame, C. G. Andeen, Solid State Ionics, 8, 333, 1983.
[36] A. S. Gozdz, J. M. Tarascon, O. S. Gebizlioglu, C. N. Schmutz, P. C. Warren, F. K. Shokoohi, Rechargeable Li and Li-ion Batteries, NJ, Eds. S. Megahed, B. M. Barnett, L. Xie, PV94-28 P.400, The Electrochemical Society, Pennington, NJ, 1995.
[37] C. Capiglia, Y. Saito, H. Kataoka, T. Kodama, E. Quartarone, P. Mustarelli, Solid State Ionics, 131, 29, 2001.
[38] A. Manuel Stephan, S. Gopu Kumar, N. G. Renganathan, M. AnbuKulandainathan, European Polymer Journal, 41, 15, 2005.
[39] D. Saika, A. Kumar., Electrochimica Acta, 49, 2581, 2004.
[40] H. S. Kim, S. I. Moon, Journal of Power Sources, 141, 293, 2005.
[41] 陳金銘: 高容量碳粉材料.工業材料雜誌100:57,1997.
[42] Shi H, Barker J, Saïdi MY, Koksbang R, Morris L., Graphite structure and lithium intercalation. Journal of Power Sources, 68, 291-295, 1997.
[43] V. Khomenko, E. Raymundo-Pi˜nero, F. B′eguin., High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources. vol. 177 , pp. 643-651 , 2008.
[44] S.R. Sivakkumar, A.G. Pandolfo., Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochimica Acta. vol. 65 , pp. 280-287, 2012.
[45] W.J. Cao, J.P. Zheng., Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. Journal of Power Sources, vol. 213 , pp. 180-185 , 2012.
[46] M. Noel, R. Santhanam., Electrochemistry of graphite intercalation compounds. Journal of Power Sources, vol. 72 , pp. 53-65, 1997.
[47] H. Gualous, G. Alcicek, Y. Diab, A. Hammar, P. Venet, K. Adams, M. Akiyama, C. Marumo., Lithium Ion capacitor characterization and modeling. ESSCAP’08 3rd European Symposium on Supercapacitors and Applications, Rome : Italy (2008).
[48] Lithium Ion Capacitor. JSR Micro, " http://www.jsrmicro.be/en/lic."
[49] Chemical Engineering (The Taiwan I. Ch. E.) Vol. 58, No.3 JUN. 2011.
[50] Michel Armand, Frank Endres, Douglas R. MacFarlane, Hiroyuki Ohno and Bruno Scrosati., ionic-liquid materials for the electrochemical challenges of the future. Nature materials. vol. 58, 2009.
[51] M.S. Michael, S.R.S. Prabaharan., High voltage electrochemical double layer capacitors using conductive carbons as additives. Journal of Power Sources. vol. 136 , pp. 250-256 , 2004.
[52] Takaya Sato, Gen Masuda, Kentaro Takagi., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications . Electrochimica Acta. vol. 49 , pp. 3603-3611, 2004.
[53] A. Krause, P. Kossyrevb, M. Oljacac, S. Passerini, M. Winter, A. Balducci., Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. Journal of Power Sources. vol. 196 , pp. 8836-8842 , 2011.
[54] C. Yuan, et al., "A novel method to synthesize whisker-like Co(OH)2 and its electrochemical properties as an electrochemical capacitor electrode," Electrochimica Acta, vol. 56, pp. 115-121, 2010.

QR CODE