簡易檢索 / 詳目顯示

研究生: 吳昱萱
Yu-Hsuan Wu
論文名稱: 開發活性污泥之潛力菌種以增進石化廢水之生物降解效率
Development of the Potential Bacterial Strains from the Activated Sludge to Improve the Bioremediation Efficiency for the Waste Water Treatment of Petroleum Chemicals
指導教授: 俞聖法
Sheng-Fa Yu
江志強
Jyh-Chiang Jiang
口試委員: 劉昌振
Chang-Chen Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 164
中文關鍵詞: 廢水處理生物處理活性污泥次世代定序微生物降解
外文關鍵詞: Wastewater Treatment, Bio-treatment, Activated Sludge, Next Generation Sequencing, Microbial Degradation
相關次數: 點閱:365下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 普遍的廢水處理方法大致分為以下三種:物理法、化學法、生物法,其中生物法是藉由活性污泥中微生物進行廢水的汙染物降解,對於環境衝擊小、環保且更符合經濟效益。為達成更高的標準,本研究著重於生物處理法,最終目標以開發活性污泥中之潛力菌種增進石化廢水降解效益。
    本研究分為三大部分,第一部分:以萃取和衍生化方法分析高鹽、AN廢水成份,包含高鹽、丙腈等,以此建立基礎且完整的廢水環境資訊;第二部分:利用次世代定序(Next Generation Sequencing, NGS)了解各活性污泥組成,再從各種活性污泥(Sludge A, B, C, D)篩選出數種環境微生物,以及生物資源保存及研究中心(BCRC)購入相似能力的微生物,一併進行比較;第三部分,測試處理後廢水經菌種降解之化學需氧量(COD)前後變化並推測其降解途徑。
    第一部分,藉由氣相層析儀GC-Mass進行廢水內的化學組成分析後,其各股廢水分別為苯酚類衍生化合物、含氯的鹵素化合物、腈化物暨雜環化合物等,而合併利用矽基衍生化後之廢水內化合物組成,則進一步發現廢水內含酯類、醇類,其中含有相當多的甘油組分。
    第二部分,藉由活性污泥搭配數種培養液以及數種碳源,篩選出的數種環境微生物多為變形菌門(Proteobacteria)以及放線菌門(Actinobacteria)。並且發現篩選菌種在活性污泥中所佔之比率較低。
    第三部分,特定條件培養下,高鹽廢水經由篩選後特定微生物物種所得之COD降解比率,可達約40%。另外,由丙烯腈(AN)廢水,所篩選之單一菌系,其COD含量可降低達43%。
    經由本論文所進行的研究,得以篩選出數株變形菌與放射菌(以門為基礎)作為高鹽與AN廢水等化工汙染廢水的主體微生物系統,後續鹽就可著重於如何優化相關菌系在廢水中的族群,以增進各式石化廢水處理的效能。


    In general, there are three methods for wastewater treatment: phyiscal, chemical, and biological methods. The biological process usually conducted by microorganisms in the activated sludge is ecofriendly and economical. In order to achieve higher level reduction of chemical pollution in wastewater, this research willing to delineate the major bacterial species that is responsible for the bioremediation of the specific chemical components for wastewater treatment. The ultimate goal is to find out the potential bacteria in the activated sludge and improve the bioremediation efficiency for the wastewater treatment of petroleum chemicals in wastewater.
    There are three parts in this thesis research. First, the research analyzed the chemical components in wastewater via extraction and derivatization via silylation to establish environmental information in wastewater. Secondly, the Next Generation Sequencing(NGS) methods are employed to diclose the major bacterial strains of each activated sludge that are responsible for remediation of the high salt and acrylic nitrile wastewater. It also isolated several bacteria strains from a series of sludge samples(Sludge A, B, C, D) to examine their degradation efficiencies of the petrochemicals in waste water. For comparison, it also targeted on some of the bacteria strains from the Bioresources Collection and Research Center (BCRC) in Taiwan, which can perform significant biodegradation activity for wastewater treatment. Finally, it measured the Chemical Oxygen Demand (COD) of wastewaters after biodegradation and assessed the degradation pathway.
    Within the wastewater, it has identified a series of phenol-derived compounds, chlorinated compounds, and nitriles. Most of esters or alcohols were found in the silylated chemicals derivatized from wastewater including glycerol.
    Furthermore, several environmental bacteria were isolated from activated sludge by P1 and Mineral Salt Basal Medium(MSB) media with carbon sources including pyridine. Most of them are belong to Proteobacteria and Actinobacteria. According to NGS data, the isolated bacteria is accounted for a lower proportion in the activated sludge.
    Finally, the high-salt wastewater after wastewater treatment can be further degraded by our isolated strain up to 40% . Besides, the COD values of acrylonitrile wastewater after MBR with another specific strain identified from the activated sludge can also be optimized by additional 43%.
    In this study, it would be able to identify several bacterialstrains including Proteobacteria and Actinobacteria. In future, it anticipates optimize their population in the activated sludge to improve the efficiency for the removal of the polluted petrochemicals from the high-salt and acrylonitrile wastewater.

    致謝 i 摘要 iii Abstract iv 目錄 vi 圖目錄 x 表目錄 xiii 壹、前言 1 1.1 研究目的 1 1.2 研究動機 2 貳、文獻回顧 3 2.1 廢水處理概論 3 2.1.1廢水處理場效能評估指標 3 2.1.2 石化工廠高鹽廢水處理 5 2.1.3 石化工廠丙烯腈(AN)廢水處理 6 2.1.4 濾膜生物反應器(Membrane bioreactor, MBR) 10 2.2 生物處理 12 2.2.1 活性污泥 12 2.2.2 影響生物處理效能之因子 13 2.2.3微生物鹵素化合物降解 15 2.2.4微生物腈化物降解 20 2.3 環境微生物菌相結構 29 2.3.1 探討菌相結構之分子生物技術 29 2.3.2 次世代定序(Next generation sequence, NGS) 32 參、實驗方法及步驟 35 3.1 實驗藥品 35 3.2 分子生物實驗材料 37 3.2.1 微生物 37 3.2.2 核酸實驗套組 37 3.3 儀器及設備 39 3.4 廢水組成分析 41 3.4.1 廢水樣本處理 41 3.4.2 廢水樣本基本性質分析 42 3.4.3 標準曲線的訂立 42 3.5 活性汙泥 47 3.5.1 活性汙泥微生物組成分析 48 3.5.2 活性汙泥微生物培養篩選 50 3.6 環境微生物特性分析 55 3.6.1 微生物活化與儲存 55 3.6.2 微生物培養 56 3.6.3 聚合酶連鎖反應(Polymerase chain reaction, PCR) 61 3.6.4 微生物溶氧測試 65 3.6.5 化學需氧量分析 66 肆、結果與討論 67 4.1 廢水成分鑑定 67 4.1.1 廢水酸化以二氯甲烷萃取 1L 67 4.1.2 廢水衍生化 71 4.1.3 廢水樣本基本性質分析 73 4.2活性汙泥 75 4.2.1 藉由次世代定序分析汙泥微生物組成(Next generation sequencing, NGS) 75 4.2.2 汙泥微生物培養篩選 77 4.3 環境微生物特性分析 82 4.3.1微生物型態觀察 82 4.3.2 微生物單一碳源培養 86 4.3.3 微生物甘油濃度極限測試 89 4.3.4 抑制微生物生長之因子測試 89 4.3.5 微生物廢水降解效能評估 91 4.3.6鹵代醇脫鹵素酶(Halohydrin dehalogenase)序列探討 99 4.3.7甘油激酶(Glycerol kinase)序列探討 101 伍、結論與未來展望 109 5.1結論 109 5.2研究心得 110 5.3 未來展望 114 陸、引用文獻 115 附錄 121

    1.Dubber, D.; Gray, N. F., Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J Environ Sci Heal A 2010, 45 (12), 1595-1600.
    2.Zhao, H. J.; Jiang, D. L.; Zhang, S. Q.; Catterall, K.; John, R., Development of a direct photoelectrochemical method for determination of chemical oxygen demand. Anal Chem 2004, 76 (1), 155-160.
    3.Nagel, B.; Dellweg, H.; Gierasch, L. M., Glossary for Chemists of Terms Used in Biotechnology - (Iupac Recommendations 1992). Pure Appl Chem 1992, 64 (1), 143-168.
    4.Jouanneau, S.; Recoules, L.; Durand, M. J.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G., Methods for assessing biochemical oxygen demand (BOD): A review. Water Res 2014, 49, 62-82.
    5.Dubber, D.; Gray, N., Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. 2010,45, 1595-600.
    6.Ji, G.; Sun, T.; Zhou, Q.; Sui, X.; Chang, S.; Li, P., Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China. 2002,18, 459-465.
    7.Rand, M. C.; Greenberg, A. E.; Taras, M. J., Standard methods for the examination of water and wastewater. 14th edition. Prepared and published jointly by American Public Health Association, American Water Works Association, and Water Pollution Control Federation.: 1976,1193.
    8.Shchegolkova, N. M.; Krasnov, G. S.; Belova, A. A.; Dmitriev, A. A.; Kharitonov, S. L.; Klimina, K. M.; Melnikova, N. V.; Kudryavtseva, A. V., Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions. Front Microbiol 2016, 7, 90-90.
    9.Holenda, B.; Domokos, E.; Rédey, Á.; Fazakas, J., Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers & Chemical Engineering 2008, 32 (6), 1270-1278.
    10.Kargi, F.; Dincer, A. R., Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation. Enzyme and Microbial Technology 1996, 19 (7), 529-537.
    11.Shaffer, D. L.; Arias Chavez, L. H.; Ben-Sasson, M.; Romero-Vargas Castrillón, S.; Yip, N. Y.; Elimelech, M., Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions. Environmental Science & Technology 2013, 47 (17), 9569-9583.
    12.Kim, Y.; Logan, B. E., Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination 2013, 308, 115-121.
    13.Taheri, E.; Khiadani, M. H.; Amin, M. M.; Nikaeen, M.; Hassanzadeh, A., Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation. Bioresource Technology 2012, 111, 21-26.
    14.Abou-Elela, S. I.; Kamel, M. M.; Fawzy, M. E., Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination 2010, 250 (1), 1-5.
    15.Huang, D.; Yue, Q.; Fu, K.; Zhang, B.; Gao, B.; Li, Q.; Wang, Y., Application for acrylonitrile wastewater treatment by new micro-electrolysis ceramic fillers. Desalination and Water Treatment 2016, 57 (10), 4420-4428.
    16.Zhou, G.; Sun, J. In Study on Effective Microorganisms Bacteria for Acrylonitrile Wastewater Treatment, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 18-20 June 2010; 2010,1-4.
    17.Le-Clech, P.; Chen, V.; Fane, T. A. G., Fouling in membrane bioreactors used in wastewater treatment. J Membrane Sci 2006, 284 (1-2), 17-53.
    18.Rosenberger, S.; Evenblij, H.; te Poele, S.; Wintgens, T.; Laabs, C., The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes—six case studies of different European research groups. J Membrane Sci 2005, 263 (1), 113-126.
    19.Lee, J.; Ahn, W.-Y.; Lee, C.-H., Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Res 2001, 35 (10), 2435-2445.
    20.Liao, B.-Q.; Kraemer, J. T.; Bagley, D. M., Anaerobic Membrane Bioreactors: Applications and Research Directions. Critical Reviews in Environmental Science and Technology 2006, 36 (6), 489-530.
    21.Chang, I.-S.; Le Clech, P.; Jefferson, B.; Judd, S., Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. Journal of Environmental Engineering 2002, 128 (11), 1018-1029.
    22.Liao, B. Q.; Bagley, D. M.; Kraemer, H. E.; Leppard, G. G.; Liss, S. N., A Review of Biofouling and its Control in Membrane Separation Bioreactors. Water Environment Research 2004, 76 (5), 425-436.
    23.Ramesh, A.; Lee, D. J.; Wang, M. L.; Hsu, J. P.; Juang, R. S.; Hwang, K. J.; Liu, J. C.; Tseng, S. J., Biofouling in Membrane Bioreactor. Separation Science and Technology 2006, 41 (7), 1345-1370.
    24.Judd, S., A review of fouling of membrane bioreactors in sewage treatment. 2004,49,229-35.
    25.Mohanty, N. R.; Wei, I. W., Oxidation of 2,4-Dinitrotoluene Using Fenton's Reagent: Reaction Mechanisms and Their Practical Applications. Hazardous Waste and Hazardous Materials 1993, 10 (2), 171-183.
    26.Ghanizadeh, G.; Sarrafpour, R., The Effects of Temperature and PH on Settlability of Activated Sludge Flocs. 2001,30.
    27.C. P. LESLIE GRADY, J.; DAIGGER, G. T.; LIM, H. C., Biological-Wastewater-Treatment-2nd-Edition. revised and expended 1999, Marcel Dekker, New York.
    28.Chapman, T. D.; Matsch, L. C.; Zander, E. H., Effect of High Dissolved Oxygen Concentration in Activated Sludge Systems. Journal (Water Pollution Control Federation) 1976, 48 (11), 2486-2510.
    29.Eckenfelder, W. W., Industrial water pollution control / W. Wesley Eckenfelder, Jr. McGraw-Hill: New York, 1989.
    30.Meng, F.; Shi, B.; Yang, F.; Zhang, H., Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess and Biosystems Engineering 2007, 30 (5), 359-367.
    31.Sadler, W. R.; Trudinger, P. A., The inhibition of microorganisms by heavy metals. Mineralium Deposita 1967, 2 (3), 158-168.
    32.Gorczyca, B.; Ganczarczyk, J., Structure and Porosity of Alum Coagulation Flocs. 1999,34, 653-666.
    33.Fetzner, S., Bacterial dehalogenation. Applied Microbiology and Biotechnology 1998, 50 (6), 633-657.
    34.Watanabe, F.; Yu, F.; Ohtaki, A.; Yamanaka, Y.; Noguchi, K.; Yohda, M.; Odaka, M., Crystal structures of halohydrin hydrogen-halide-lyases from Corynebacterium sp. N-1074. Proteins: Structure, Function, and Bioinformatics 2015, 83 (12), 2230-2239.
    35.Nakamura, T.; Nagasawa, T.; Yu, F.; Watanabe, I.; Yamada, H., Characterization of a novel enantioselective halohydrin hydrogen-halide-lyase. Applied and environmental microbiology 1994, 60 (4), 1297-1301.
    36.Elenkov, M. M.; Hauer, B.; Janssen, D. B., Enantioselective Ring Opening of Epoxides with Cyanide Catalysed by Halohydrin Dehalogenases: A New Approach to Non-Racemic β-Hydroxy Nitriles. Advanced Synthesis & Catalysis 2006, 348 (4‐5), 579-585.
    37.Poelarends, G. J.; van Hylckama Vlieg, J. E.; Marchesi, J. R.; Freitas Dos Santos, L. M.; Janssen, D. B., Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1. J Bacteriol 1999, 181 (7), 2050-2058.
    38.van Hylckama Vlieg, J. E. T.; Tang, L.; Lutje Spelberg, J. H.; Smilda, T.; Poelarends, G. J.; Bosma, T.; van Merode, A. E. J.; Fraaije, M. W.; Janssen, D. B., Halohydrin Dehalogenases Are Structurally and Mechanistically Related to Short-Chain Dehydrogenases/Reductases. J Bacteriol 2001, 183 (17), 5058.
    39.Jin, H.-X.; OuYang, X.-K., Enzymatic approaches to the preparation of chiral epichlorohydrin. RSC Advances 2015, 5 (113), 92988-92994.
    40.de Jong, R. M.; Kalk, K. H.; Tang, L.; Janssen, D. B.; Dijkstra, B. W., The X-ray structure of the haloalcohol dehalogenase HheA from Arthrobacter sp. strain AD2: insight into enantioselectivity and halide binding in the haloalcohol dehalogenase family. J Bacteriol 2006, 188 (11), 4051-4056.
    41.Schallmey, M.; Koopmeiners, J.; Wells, E.; Wardenga, R.; Schallmey, A., Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining. Applied and environmental microbiology 2014, 80 (23), 7303-7315.
    42.Mohn, W. W.; Tiedje, J. M., Microbial reductive dehalogenation. Microbiol Rev 1992, 56 (3), 482-507.
    43.Gantzer, C. J.; Wackett, L. P., Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & Technology 1991, 25 (4), 715-722.
    44.Nagasawa, T.; Yamada, H., Microbial transformations of nitriles. Trends in Biotechnology 1989, 7 (6), 153-158.
    45.Gupta, N.; Balomajumder, C.; Agarwal, V. K., Enzymatic mechanism and biochemistry for cyanide degradation: A review. Journal of Hazardous Materials 2010, 176 (1), 1-13.
    46.Banerjee, A.; Sharma, R.; Banerjee, U., RETRACTED ARTICLE: The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology 2002, 60 (1), 33-44.
    47.Harper, D. B., Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216. The Biochemical journal 1977, 165 (2), 309-319.
    48.Nawaz, M. S.; Franklin, W.; Campbell, W. L.; Heinze, T. M.; Cerniglia, C. E., Metabolism of acrylonitrile by Klebsiella pneumoniae. Archives of Microbiology 1991, 156 (3), 231-238.
    49.Wang, C. C.; Lee, C. M., Denitrification with acrylonitrile as a substrate using pure bacteria cultures isolated from acrylonitrile–butadiene–styrene wastewater. Environment International 2001, 26 (4), 237-241.
    50.Liu, J.-K.; H Liu, C.; S Lin, C., The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. 1997,21, 37-42.
    51.Ebbs, S., Biological degradation of cyanide compounds. Current Opinion in Biotechnology 2004, 15 (3), 231-236.
    52.Denk, T. R. A.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B., The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biology and Biochemistry 2017, 105, 121-137.
    53.Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C., Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 2014, 114 (8), 4041-4062.
    54.Wrage, N.; Velthof, G. L.; van Beusichem, M. L.; Oenema, O., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 2001, 33 (12), 1723-1732.
    55.Zumft, W. G., Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 1997, 61 (4), 533-616.
    56.Ye, R. W.; Thomas, S. M., Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 2001, 4 (3), 307-312.
    57.Precigou, S.; Goulas, P.; Duran, R., Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction. FEMS Microbiology Letters 2001, 204 (1), 155-161.
    58.Coffey, L.; Clarke, A.; Duggan, P.; Tambling, K.; Horgan, S.; Dowling, D.; O’Reilly, C., Isolation of identical nitrilase genes from multiple bacterial strains and real-time PCR detection of the genes from soils provides evidence of horizontal gene transfer. Archives of Microbiology 2009, 191 (10), 761.
    59.Wagner, M.; Amann, R.; Lemmer, H.; Schleifer, K. H., Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and environmental microbiology 1993, 59 (5), 1520-1525.
    60.Øvreås, L., Population and community level approaches for analysing microbial diversity in natural environments. Ecology Letters 2000, 3 (3), 236-251.
    61.Hill, T. C. J.; Walsh, K. A.; Harris, J. A.; Moffett, B. F., Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology 2003, 43 (1), 1-11.
    62.Widmer, F., Assessing Effects of Transgenic Crops on Soil Microbial Communities. 2007,107, 207-34.
    63.H. Nakatsu, C., Soil Microbial Community Analysis Using Denaturing Gradient Gel Electrophoresis. 2007, 71.
    64.Muyzer, G.; de Waal, E. C.; Uitterlinden, A. G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology 1993, 59 (3), 695-700.
    65.Muyzer, G.; Teske, A.; O. Wirsen, C.; W. Jannasch, H., Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. 1995,164, 165-72.
    66.Muyzer, G.; Smalla, K., Application of Denaturing Gradient Gel Electrophoresis (DGGE) and Temperature Gradient Gel Electrophoresis (TGGE) in Microbial Ecology. 1998,73, 127-41.
    67.Nübel, U.; Engelen, B.; Felske, A.; Snaidr, J.; Wieshuber, A.; Amann, R. I.; Ludwig, W.; Backhaus, H., Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 1996, 178 (19), 5636-5643.
    68.Sanger, F.; Nicklen, S.; Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977, 74 (12), 5463-5467.
    69.Metzker, M. L., Sequencing technologies — the next generation. Nature Reviews Genetics 2009, 11, 31.
    70.Mardis, E. R., Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics 2008, 9 (1), 387-402.
    71.Shen, Y.; Xu, Z., An improved GC–MS method in determining glycerol in different types of biological samples. Journal of Chromatography B 2013, 930, 36-40.
    72.Zhou, L.; Li, H.; Zhang, Y.; Han, S.; Xu, H., Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] 2016, 47 (2), 271-278.
    73.Fritsche, W.; Hofrichter, M., Aerobic Degradation of Recalcitrant Organic Compounds by Microorganisms. In Environmental Biotechnology, 2005.
    74.O'Sullivan, L. A.; Mahenthiralingam, E., Biotechnological potential within the genus Burkholderia. Letters in Applied Microbiology 2005, 41 (1), 8-11.
    75.Kumar, A.; Dewulf, J.; Luvsanjamba, M.; Van Langenhove, H., Continuous operation of membrane bioreactor treating toluene vapors by Burkholderia vietnamiensis G4. Chemical Engineering Journal 2008, 140 (1), 193-200.
    76.Orhan, F., Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] 2016, 47 (3), 621-627.
    77.Daims, H.; Nielsen, J. L.; Nielsen, P. H.; Schleifer, K. H.; Wagner, M., In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and environmental microbiology 2001, 67 (11), 5273-5284.
    78.Snaidr, J.; Amann, R.; Huber, I.; Ludwig, W.; Schleifer, K. H., Phylogenetic analysis and in situ identification of bacteria in activated sludge. Applied and environmental microbiology 1997, 63 (7), 2884-2896.
    79.Juretschko, S.; Loy, A.; Lehner, A.; Wagner, M., The Microbial Community Composition of a Nitrifying-Denitrifying Activated Sludge from an Industrial Sewage Treatment Plant Analyzed by the Full-Cycle rRNA Approach. Systematic and Applied Microbiology 2002, 25 (1), 84-99.
    80.Layton, A. C.; Karanth, P. N.; Lajoie, C. A.; Meyers, A. J.; Gregory, I. R.; Stapleton, R. D.; Taylor, D. E.; Sayler, G. S., Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Applied and environmental microbiology 2000, 66 (3), 1167-1174.
    81.Dar, S. A.; Kuenen, J. G.; Muyzer, G., Nested PCR-Denaturing Gradient Gel Electrophoresis Approach To Determine the Diversity of Sulfate-Reducing Bacteria in Complex Microbial Communities. Applied and Environmental Microbiology 2005, 71 (5), 2325.
    82.Suar, M.; van der Meer, J. R.; Lawlor, K.; Holliger, C.; Lal, R., Dynamics of multiple lin gene expression in Sphingomonas paucimobilis B90A in response to different hexachlorocyclohexane isomers. Applied and environmental microbiology 2004, 70 (11), 6650-6656.
    83.Konti, A., Investigation of Halohydrins Degradation by Whole Cells and Cell-free Extract of Pseudomonas putida DSM 437: A Kinetic Approach. 2017; Vol. 31, p 233-240.
    84.Gong, T.; Xu, X. Q.; Che, Y.; Liu, R. H.; Gao, W. X.; Zhao, F. J.; Yu, H. L.; Liang, J. N.; Xu, P.; Song, C. J.; Yang, C., Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Sci Rep-Uk 2017, 7.
    85.Chen, M.; Yan, Y.; Zhang, W.; Lu, W.; Wang, J.; Ping, S.; Lin, M., Complete genome sequence of the type strain Pseudomonas stutzeri CGMCC 1.1803. J Bacteriol 2011, 193 (21), 6095-6095.
    86.Pettigrew, D. W.; Smith, G. B.; Thomas, K. P.; Dodds, D. N. C., Conserved Active Site Aspartates and Domain–Domain Interactions in Regulatory Properties of the Sugar Kinase Superfamily. Archives of Biochemistry and Biophysics 1998, 349 (2), 236-245.
    87.Schweizer, H. P.; Jump, R.; Po, C., Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator (glpF) and glycerol kinase (glpk) of Pseudomonas aeruginosa. Microbiology 1997, 143 (4), 1287-1297.
    88.Nagata, Y.; Miyauchi, K.; J. Takagi, M., Complete analysis of genes and enzymes for ?-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. 1999,23, 380-390.
    89.Karim, M. A., Bacterial Load in Relation to Physicochemical Parameters and Phytoplankton Abundance of an Urban Pond. 2012,41.

    90. 張峻誠,2017.“以生物濾床工法改善還水養殖水體環境之研究”碩士論文,國立中山大學海洋環境及工程研究所。
    91. 戴才芸,2015.“綠島朝日溫泉潮間帶微生物群落調查”碩士論文,國立台東大學生命科學研究所。

    QR CODE