簡易檢索 / 詳目顯示

研究生: 楊佩芬
Pei-Fen Yang
論文名稱: 噬菌體之重組透明質酸裂解酶製備透明質酸寡醣
Oligosaccharides of hyaluronic acid preparation using recombinant phage hyaluronic acid lyase
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 劉懷勝
none
林俊一
none
陳秀美
none
徐敬衡
none
段國仁
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 163
中文關鍵詞: 透明質酸透明質酸裂解酶
外文關鍵詞: hyaluronic acid, phage hyaluronic acid lyase
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般寡醣無法被人體代謝吸收,但是具有增進消化作用、促進益菌增生、影響營養素吸收及促進細胞訊息傳遞,目前巿面上的寡糖包括了異麥芽醣、異麥芽三醣、果寡醣、乳寡醣等多種。近年來許多研究發現透明質酸寡醣具有特殊生理作用,但是尚未大量生產使用。本論文探討利用基因工程方法在E. coli中大量表現鏈球菌噬菌體之透明質酸降解酶,並製備具金屬親和性磁性微粒親和純化並固定化透明質酸降解酶,進行降解透明質酸製備透明質酸寡醣。
    透明質酸(hyaluronic acid,HA)源自於動物組織及微生物筴膜,從動物組織萃取透明質酸的程序繁雜且耗時,從原生鏈球菌發酵雖可產出透明質酸且產量大及成本低,但是所得產品存有致病因子的風險,本論文第二章探討利用基因重組技術,將原生菌種Streptococcus zooepidemicus的透明質酸合成酶(HA synthase)基因(hasA)及尿嘧啶雙磷酸葡萄醣去氫酶(UDP-glucuronic acid dehydrogenase)基因(hasB)於E. coli中表現生產透明質酸,以解決鏈球菌病原菌生產透明質酸所產生之感染風險。僅帶有重組hasA基因之質體的E. coli BL21(DE3)時即可合成出透明質酸。當表現hasB時有助於菌體的生長,同時表現hasA及hasB這兩個基因時,透明質酸產量為單獨表現hasA的2倍,但其產量遠低於S. zooepidemicus原生菌。
    不論從動物組織或微生物莢膜中萃取透明質酸的過程需要進行多次的乙醇或季胺鹽錯合物沈澱回收透明質酸,但是沈澱物分離需要以膜過濾或離心的方式進行較耗時且消耗資源。本論文第三章製備帶正電荷性的磁性微粒,利用靜電引力回收帶負電荷之透明質酸,在所施之磁場下可輕易分離吸附透明質酸的磁性微粒與溶液。經氨基丙基三乙氧基矽烷(APTMS)修飾的磁性微粒(NH2-M)無法將吸附的透明質酸完全脫附,但是經幾丁聚醣(chitosan)處理的磁性微粒(Chitosan-M)的透明質酸脫附量則可達吸附量的92.5 %,利用Chiotsan-M直接回收發酵液中透明質酸,則回收率不及8 %,且Chitosan-M的透明質酸吸附量僅達理論值的一半,原因在於發酵液中存在其他帶電荷的物質與幾丁聚醣或透明質酸作用形成了遮蔽效應導致透明質酸與Chitosan-M無法有效作用。
    本論文第四章利用E coli表現重組噬菌體透明質酸裂解酶(HA lyase),HA lyase置於pH4 ~ 8的環境1小時活性維持100 %,置於溫度20 ~ 30 oC的活性也維持在100 %,在溫度35 oC放置1小時活性則剩下20 %,當溫度愈高失活速度愈快;HA lyase可存放於含有500 mM imidazole、500 mM NaCl,pH6,10 mM的磷酸鹽緩衝溶液中在溫度-20 oC、4 oC及室溫(20 oC)長達一個月,活性仍維持在95 %以上。由HA lyase裂解透明質酸所得產物中不飽和鍵含量可計算出產物透明質酸寡醣的分子量平均約2950 kDa,而由MALDI-TOF質譜儀分析所得的分子量主要在1300 kDa左右。此HA lyase具有對透明質酸專一性及所產生之透明質酸裂解產物具有不飽和鍵的特性,已成功可應用於透明質酸定量分析上。
    論文的第五章探討製備固定金屬親和磁性微粒(Immobilized metal affinity magnetite,IMAM)直接從含細胞破脆片粗蛋白質溶液中回收及固定化HA lyase,不論使用市售的IMAC用的膠體或自製IMAM固定化HA lyase,其活性皆降至游離態的10 %以下,主要是因為固定化後HA lyase的活性中心被包埋在內部造成立體障礙不易與透明質酸作用,另外固定化HA lyase在pH 5及pH 6帶負電荷與透明質酸產生斥力導致固定化後的活性下降。HA lyase直接固定化於IMAM微粒經重覆使用於透明質酸寡醣之製備,其活性隨著使用次數而降低,在第三次批式反應以後,活性達穩定,推測HA lyase與IMAM之間非親和性作用,在第一次與第二次反應後,HA layse從IMAM上脫落,導致活性下降。


    Oligosaccharides such as isomaltoses isomaltotrises, fructooligosaccharides and galactooligosaccharideshave been used as supplementary nutrition fool. Clinical studies have show that administering several oligosaccharides can increase the number of friendly bacteria such as Bifidobacteria and Lactobacillus species in the colon while simultaneously reducing the population of harmful bacteria. Recently, oligomers of hyaluronic acid (Oligo-HA) have been found to specific beneficial biological activity. In order to further test its efficacy, an efficient oilgo-HA preparation method has to be developed. In this study, the hyaluronic acid (HA) lyase of Streptococcus pyogenes bacteriophage H4489A was expression in Escherichia coli, not only purified from crude extract directly by by immobilized metal affinity magnetite (IMAM) but also immobilized on IMAM for oligo-HA preparation.
    HA is a linear, unbranched polysaccharide made of alternating N-acetyl-Dglucosamine and D-glucuronic acid. HA is commercially obtained from rooster combs and certain attenuated strains of group C Streptococcus which synthesize this compound naturally as part of their outer capsule. However, these are less-than-ideal sources. All rooster comb-based HA products carry warnings directed to those who are allergic to avian products, while Streptococci can be difficult or expensive to ferment, are challenging to genetically manipulate, and have the potential to produce exotoxins. Therefore, the hasA gene and hasB gene from Streptococcus zooepidemicus, which encodes the enzyme hyaluronan synthase and UDP-gluronic acid dehydrogenase respectively, was cloned and expressed in E. coli in order to develop a new and safer HA producing strain. However, due to the very different membrane structure, the production of HA in the recombinant Gram (-) E. coli was about thousand fold less that in Gram (+) S. zooepidemicus.
    Usually HA isolation from the crude HA extract involves with quaternary ammonium compound such as cetyl pyridinium chloride (CPC) or ethanol precipitation. Instead of using filtration or centrifugation to recover the precipitate, submicron size magnetite modified with various positively charged functional groups was prepared to recover HA through electrostatic interaction under magnetic field from fermentation broth. Chitosan-magnetite rather than NH2-magnetite has demonstrated its HA adsorption ability and can achieve 92.5 % elution yield, the purified HA is free from proteins contamination.
    Unlike most bacterial HA lyase, HA lyase of Streptococcus pyogenes bacteriophage specifically cleaved HA to unsaturated oligosaccharides which has an optimum absorption at 232 nm. The limiting absorbance showed linearity in the range of concentrations. Based on this fact, a specific, simple, easy to apply, low cost, and fast enough method was developed for routine determination of HA concentration of a microbial HA production process.
    HA lyase of Streptococcus pyogenes bacteriophage was employed to prepare oligo-HA. The gene of this phage enzyme was over-expressed in E. coli. Metal chelating ligands were immobilized metal affinity magnetite (IMAM). This IMAM micro-particle was employed to directly recover the recombinant HA lyase from the unclarified crude extract. The HA lyase specifically adsorbed on IMAM was directly used for oligo-HA preparation. The one-step purification-immobilization of HA lyase in reduced the inevitable losses of enzymatic activity during HA lyase purificartion and immobilization. However, the activity of HA lyase immobilized by either IMAM or Pharmacia’s IMAC gel reduced to 10 % of the free HA lyase. The mass transfer resistance between the immobilized HA lyase and the high molecular weight substrate HA contributed to the low activity. On the other hand, the stability of this immobilized HA satisfactory since its activity maintained at the same level after the 2nd repeated used.

    中文摘要I 英文摘要IV 誌  謝VII 目 錄VIII 圖 索 引XII 表 索 引XV 第 一 章 緒論01 1.1 前言01 1.2 研究內容04 1.3 文獻回顧05 1.3.1 透明質酸05 1.3.1.1結構與性質06 1.3.1.2分佈與生理功能11 1.3.2寡透明質酸11 1.3.2.1 寡透明質酸的生理活性12 1.3.2.2寡透明質酸的製備14 1.3.3 透明質酸降解酶19 1.3.3.1 分類20 1.3.3.2透明質酸裂解酶21 1.3.3.3透明質酸與透明質酸降解酶的應用23 1.3.4磁性粒子24 1.3.5 固定化金屬親和層析26 第 二 章 利用基因重組大腸桿菌生產透明質酸29 2.1前言29 2.2 材料、設備與方法34 2.2.1 實驗材料34 2.2.1.1 實驗菌株34 2.2.1.2 質體34 2.2.1.3 酵素34 2.2.1.4 DNA操作試液套件組34 2.2.1.5 標準分子量溶液35 2.2.1.6 藥品35 2.2.2 實驗設備36 2.2.3 實驗方法37 2.2.3.1 鏈球菌的培養37 2.2.3.2 Streptococcus zooepidemicus染色體DNA純化37 2.2.3.3 透明質酸的純化38 2.2.3.4透明質酸含量測定38 2.2.3.5E. coli質體之純化38 2.2.3.6聚合酶連鎖(polymerase chain reaction, PCR)反應39 2.2.3.7限制酶反應40 2.2.3.8DNA電泳40 2.2.3.9DNA片段之電泳純化41 2.2.3.10DNA片段之接合反應41 2.2.3.11 製備電轉殖之大腸桿菌勝任細胞41 2.2.3.12 電轉殖42 2.2.3.13 蛋白質之表現42 2.2.3.14丙烯醯胺膠體電泳43 2.2.3.15 利用固定化金屬親和層析回收含6×His-tag之重組蛋白質44 2.2.3.16 UDP-glucose dehydrogenase酵素活性分析45 2.2.3.17HA lyase分析HA含量的分析原理45 2.3 結果與討論46 2.3.1 hasA、hasB基因之選殖與質體之建構46 2.3.2 蛋白質之表現47 2.3.3 Carbazole法分析HA48 2.3.4 Carbazole法分析重組E. coli所產之HA58 2.3.5 UDP-glucose dehydrogenase酵素活性分析58 2.3.6 利用HA lyase確認帶有pHASAB的菌株所產的HA60 2.3.7 重組E. coli與鏈球菌之培養生產HA62 2.4 結論65 第 三 章 磁性微粒回收透明質酸66 3.1 前言66 3.2 材料、設備與方法70 3.2.1 實驗材料70 3.2.2 實驗設備71 3.2.2 實驗方法71 3.2.2.1 Chitosan-M磁性微粒製備71 3.2.2.2 NH2-M磁性微粒製備71 3.2.2.3 磁性微粒性質分析73 3.2.2.4 磁性微粒吸附HA的等溫吸附曲線73 3.2.2.5 脫附HA的離子強度效應73 3.2.2.6 Chitosan-M重覆使用74 3.2.2.7 純化S. zooepidemicus發酵液中的HA74 3.3 結果與討讑75 3.3.1 磁性粒子性質分析75 3.3.2 NH2-M磁性微粒回收HA條件探討79 3.3.3 Chitosan-M回收HA條件探討80 3.4 結論86 第 四 章 透明質酸裂解酶特性與應用於透明質酸分析87 4.1 前言87 4.2 實驗方法88 4.2.1 菌體培養與蛋白質表現88 4.2. 2 蛋白質濃度分析89 4.2.3 HA lyase降解HA速率分析89 4.2.4 HA lyase穩定性分析90 4.2.4 HA lyase最適反應條件91 4.2.5 以HA lyase分析HA濃度91 4.3 結果與討論92 4.3.1 重組HA lyase之表現92 4.3.2 HA lyase活性分析92 4.3.3 HA lyase穩定性93 4.3.4 HA lyase最適反應條件94 4.3.5 HA lyase動力學與寡HA產物分子量分析96 4.3.6 利用HA lyase分析HA的濃度102 4.4 結論107 第 五 章 金屬親和磁性微粒純化及固定化HA lyase108 5.1 前言108 5.2 實驗方法109 5.2.1 IMAM磁性微粒製備109 5.2.2NaCl濃度與Imidazole濃度對IMAM吸附蛋白質的影響110 5.2.3 IMAM固定化HA lyase111 5.2.4 固定化HA lyase活性分析111 5.3 結果與討論112 5.3.1 磁性粒子物性分析112 5.3.2 純化細胞破碎液中的重組蛋白質114 5.3.3 純化細胞破碎液中的重組蛋白質115 5.3.4 純化重組HA lyase115 5.3.5 IMAM直接固定化HA lyase116 5.4 結論122 第 六 章結論與建議123 參考文獻126 作者簡介141

    淩沛學、侯麗君、賀豔麗、郭學平、楊曉紅、張天民著,透明質酸,中國輕工業出版社
    Allen, A.B., Lindsay, H., and Seilly, D., Bolitho, S., Peters, S.E., Maskell, D.J., “Identification and characterization of hyaluronate lyase from Streptococcus suis”, Microb. Pathog., 36, 327-335, 2004,
    An, X., and Su, Z., “Characterization and application of high hagnetic property chitosan particles”, J. Appl. Polym. Sci., 81, 1175-1181, 2001
    An, X., Su, Z, and Zeng, H., “Preparation of highly magnetic chitosan particles and their use for affinity purification of enzymes”, J. Chem. Technol. Biotechnol., 78, 596-600, 2003
    Armstrong, D.C., and Johns, M.R., “Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus”, Appl. Environ. Microbiol., 63, 2759-2764, 1997
    Asari, A., Miyauchi, S., Matsuzaka, S., Ito, H., and Uchiyama, Y., “Hyaluronate on heat shock protein and synovial cells in a canine model of osteoarthritis”, Osteoarthritis Cartilage, 4, 213-215, 1996
    Asari, A., Miyauchi, S., Matsuzaka, S., Ito, T., and Kominami, E., and Uchiyama, Y., “Molecular weight-dependent effects of hyaluronate on the arthritic synovium”, Arch. Histol. Cytol, 61, 125-135, 1998
    Baker J.R., Dong S, and Pritchard D.G., “The hyaluronan lyase of Streptococcus pyrogens bacteriophage H4489A”, Biochem J., 365, 317-322, 2002
    Balazs, E.A., “Ultrapure hyaluronic acid and the use therefore”, US. Pat. 4141973, 1979
    Benchetrit, L.C., Gray, E.D., and Wannamaker, L.W., “Hyaluronidase activity of bacteriophages of group A Streptococci”, Infect. Immun, 15, 527-532, 1977
    Bitter, T., and Muir, H.M., “A modified uronic acid carbazole reaction”, Anal. Biochem., 4, 330-334, 1962
    Blank, L.M., McLaughlin, R.L, and Nielsen, L.K., “Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate”, Biotechnol. Bioeng., 90, 685-693, 2005
    Blundel, C.D., and Almond, A., “Enzymatic and chemical methods for the generation of pure hyaluronan oligosaccharides with both odd and even unmber of the generation of pure hyaluronan oligosaccharides”, Anal. Biochem., 353, 236-247, 2006
    Botzki, A., Rigden, D.J., Braun, S., Nukui, M., Salmen, S., Hoechsteter, J., Bernhardt, G., Dove, S., and Jedrzejas, M.J., “L-Ascorbic acid 6-hexadecanoate, a potent hyaluronidase Inhibitor”, J. Biol. Chem., 279, 45990-45997, 2004
    Bothner, H., and Wik, O., “Rheology of hyaluronate”, Acta Otalaryngol. Suppl., 442, 25-30, 1987
    Bothner, H., Waaler, T., and Wik, O., “Limiting viscosity number and weight average molecular weight of hyaluronate samples produced by heat degradation”, Int. J. Biol. Macromol., 10, 287-291, 1988
    Bruce, I.J., Taylor, J., Todd, M., Davies, M.J., Borioni, E., Sangregorio, C., and Sen, T., “Synthesis, characterization and application of silica-magnetite nanocomposites”, J. Magn. Magn. Mater., 284, 145-160, 2004
    Bruce, I.J., and Sen, T., “Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations”, Langmuir, 21, 7029-7035, 2005
    Campo, A.D., Sen, T., Lellouche, J.P., and Bruce, I.J., “Multifunctional magnetite and silica-magnetite nanoparticles: synthesis, surface activation and applications in life science”, J. Magn. Magn. Mater., 293, 33-40, 2005
    Chang, Y.C., and Chen, D.H., “Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent”, Macromol. Biosci., 5, 254-261, 2005
    Chang, Y.C., and Chen, D.W., “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions”, J. Colloid Interface Sci., 283, 446-451, 2005
    Chong, B.F., Blank, L.M., Mclaughlin, R., and Nielsen L.K., “Mini-review microbial hyaluronic acid production”, Appl. Microbiol. Biotechnol.", 13, 341-351, 2004
    Chun, C.L., and Park, J.W., “Oil spill remediation using the magnetic separation”, J. Environ. Eng., 127, 443-449, 2001
    Cleland, R. L., and Wang, J. L., “Ionic polysaccharides. III. dilute solution properties of hyaluronic acid fractions”, Biopolymers, 9, 799-810, 1970
    Clemmitt, R.H., and Chase, H.A., “Facilitated downstream processing of a histidine-tagged protein from unclarified E. coli homogenates using immobilized metal affinity expanded-bed adsorption”, Biotedchnol. Bioeng., 67, 206-216, 2000
    DeAngelis, P.L., “Enzymological characterization of the Pasteurella multocida hyaluronic acid”, Biochemistry, 35, 9768-9771, 1996
    DeAngelis, P.L, Oatman, L.C., and Gay, D.F., “Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors”, J. Biol. Chem., 278, 35199-35203, 2003
    Delpech, B., Bertrand, P., and Maingonnat, C., “Immunoenzymoassay of the hyaluronic acid-hyaluronectin interaction: application to the detection of hyaluronic acid in serum of mornal subjects and cancer patients”, Anal., Biochem., 149, 555-565, 1985
    Dougherty, B.A., and Rijn, Ivo van de, “Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group a Streptococci”, J. Biol. Chem., 268, 7118-7124, 1993
    Feng, D., Aldrich, C., and Tan, H., “Removal of Heavy metal ions by carrier magnetic separation of adsorptive particulates”, Hydrometallurgy, 56, 359-368, 2000
    Ferrante, D.N., “Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity”, J. Biol. Chem., 220, 303-306, 1956
    Fessler, J. H., and Fessler, L. I., “Electron microscopic visualization of the polysaccharide hyaluronic acid”, Proc. Natl. Acad. Sci. USA, 27, 141-147, 1966
    Fieber, C., Baumann, P., Vallon, R., Termeer, C., Simon, J.C., Hofmann, M., Angel, P., Herrlich, P. and Sleeman, J.P., “Hyaluronan – oligosaccharide - induced transcription of metallprotease”, J. Cell. Sci., 117, 359-367, 2003
    Fitzgerald, K.A., Bowie, A.G., Skeffington, B.S., and O’Neill, L.A., “Ras, protein kinase C, and I kb kinases 1 and 2 are downstream efectors of CD44 during the activation of NF-kB by hyaluronic acid fragments in T24 carcinoma cells”, J. Immunol., 164, 2053-2063, 2000
    Frazreb, M., Siemann-Herzberg, M., Hobley, T.J., and Thomas, O.R.T., “Protein purification using magnetic adsorbent particles”, Appl. Microbiol. Biotechnaol., 70, 505-516, 2006
    Ghosh, P., “The role of hyaluronic acid (hyaluronan) in health and disease: Interactions with cells, cartilage and components of synovial fluid”, Clin. Exp. Rheumatol., 12, 75-82, 1994
    Goa, K.L., and Benfield, P., “Hyaluronic acid : a review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing”, Drugs, 47, 536-566, 1994
    Gupta, V., Eshwari, A.N.S., Panda, A.K., and Agrwal, G.P., “Optimization of immobilized metal ion affinity chromatography for single-step purification of recombinant ovine growth homone expressed in Escherichia coli”, J. Chromatogr. A., 998, 93-101, 2003
    Gupta, A.K., and Surtis A.S.G., “Surface modified superparamagnetic naoparticles for drug delivery: interaction studies with human fibroblasts in culture”, J. Material. Sci., 15, 493-496, 2004
    Hardingham, T. E., and Fosang, A. J., “Proteoglycans : many forms and many functions”, FASEB J., 6, 861-870, 1992
    Hascall, V.C., and Heinegard, D., “Aggregation of cartilage. proteoglycans. I. the role of hyaluronic acid”, J. Biol. Chem., 249, 4232-4241, 1974
    Hayase, S., Oda, Y., Honda, S., and Kakehi, K, “High-performance capillary electrophoresis of hyaluronic acid: determination of its amount and molecular mass”, J. Chromatogr. A., 768, 295-305, 1997
    Hayashi, S., “Study on the degradation of glycosaminoglycans by canine liver lysosomal enzymes”, J . Biochem., 82, 1287-1295, 1977
    He, X., Wang, K., Weihong, D.L., Tan, W., He, C., Huang, S., Liu, B., Lin, X., and Chen, X., “A noverl DNA-enrichment technology based on amino-modified functionalized silica nanoparticles”, J. Disper. Sci. Tech., 24, 633-640, 2003
    Hill, J., “Purification and properties of streptococcal hyaluronate lyase”, Infect. Immun., 14, 726-735, 1976
    Honda, H., Kawabe, A., Shinka, M., and Kobayashi, T., “Development of chitosan-conjugated magnetite for magnetic cell separation”, J. Ferment. Bioeng., 2, 191-196, 1998
    Horton, M.R., Shapiro, S., Bao, C., Lowenstein, C.J., and Noble, P.W., “Induction and regulation of macrophage metalloelastase by hyaluronan fragments in mouse macrophages”, J. Immunol, 162, 4171-4176, 1999
    Hynes, W., and Ferretti, J., “Sequence analysis and expression in Escherichia coli of the hyaluronidase gene of Streptococcus pyogenes bacteriophage H4489A”, Infect. Immun., 57, 533-539, 1989
    Hynes, W., Hancock, L., and Ferretti, J., “Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity”, Infect. Immun., 63, 3015-3020, 1995
    Jedrzejas, M.J., Mewbourne, R.B., Chantalat L., and Mcpherson, D.T., “Expression and purification of Streptococcus pneumoniae hyaluronate lyase from Escherichia coli”, Protein Expr. Purif, 13, 83-89, 1998
    Jiang, D.S., Long, S.Y., Huang, J., Xiao, H., and Zhou, J.Y., “Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres”, Biochem. Eng. J., 25, 12-23, 2005
    Johns, M.R., Goh, L.T., and Oeggerli, A., “Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus”, Biotechnol. Lett., 16, 507-512, 1994
    Karamanos, N.K., and Hjerpe, A., “High-performance capillary electrphoretic analysis of hyaluroana in effusions from human malignant”, J. Chromatorgr. B., 697, 277-281, 697
    Kang, Y.S., Risbud, S., Rabolt, J.F., and Stroeve, P., “Synthesis and characterization of nanometer-Size Fe3O4 and -Fe2O3 Particles”, Chem. Maer., 8, 2209-2211, 1996
    Kendall, F. E., Heidelberger, M, and Dawson, M. H., “A serologically inactive polysaccharide Streptococcus”, J. Biol. Chem., 118, 61-69, 1937
    Kim, J.H., Yoo, S.J., Oh, D.K., Kweon, Y.G., Park, D.W., Lee, C.H., and Gil, G.H., “Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid”, Enzyme. Microbiol. Technol., 19, 440-445, 1996
    Kreil, G., “Review, Hyaluronidases - A group of neglected enzymes”, Protein Sci., 4, 1666-1669, 1995
    Kobayashi, H., Sun, G. W., Tanaka, Y., Kondo, T., and Terao, T., “Serum hyaluronic acid levels during pregnancy and labor”, Obstt. & Gynecol., 93, 480-484, 1999
    Kubo, K., Nakamura, T., Takagaki, K., Yoshida, Y., and Endo, M., “Depolymerization of hyaluronan by sonication”, Glycoconj. J., 10, 435-439, 1993
    Kujawa, M.J., Carrion, D.A., and Caplan, A.I., “Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture”, Dev. Biol., 114, 519-528, 1986
    Latour, C.D., and Kolm, H., “Magnetic separation in water pollution control”, IEEE Trans. Magn., 11, 1570-1572, 1975
    Laurent, T. C., and Gergly, J., “Light-scattering studies on hyaluronic acid”, J. Biol. Chem., 212, 325-333, 1955
    Laurent, T. C., and Fraser, J. R., “Hyaluronan”, FASEB J., 6, 2397-2404, 1992
    Linker, A., Meyer, K., and Hoffman, P., “The production of hyaluronate oligosassharides by leech hyaluronidase and alkali”, J. Biol. Chem., 235, 924-927, 1960
    Liu, C, Honda, H., Ohshima, A, Shinkai, M., and Kobayashi, T., “Development of chitosan-Magnetite aggregates containing Nitrosomonas europaea cells for nitrification enhancement”, J. Biosci. Bioeng., 5, 420-425, 2000
    Luca, C.D., Lansing, M. Crescenzi, F., Martin, I., Shen, G.J., O’Regan, M., and Wong, C.H., ”Overexpression, one-step purificaiton and characterization of UDP-glucose dehydrogenase and UDP-N-acetyl- glucosamepyrophosphorylase”, Bioorg. Med. Chem., 4, 131-142, 1996
    Maclennan, A.P., “The production of capsules, hyaluronic acid and hyaluronidase by group A and group C Streptococci”, J. Gen. Microbiol, 14, 134-142, 1956
    McKee, C.M., Penno, M.B., Cowman, M., Burdick, M.D., Strieter, R.M., Bao, C., and Noble, P.W., “Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44”, J. Clin. Invest., 98, 2403-2413, 1996
    McKee, C.M., Lowenstein, C.J., and Horton, M.R., “Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor kB-dependent mechanism”, J. Biol. Chem., 272, 8013-8018. 1997
    Menzel, E.J., and Farr, C., “Hyaluronidase and its substrate hyaluronan: biochemicstry, biological activities and therapeutic uses”, Cancer Lett., 131, 3-11, 1998
    Meyer, K., and Palmer, J. W., “The polysaccharide of the vitreous humor”, J. Biol. Chem., 107, 629-634, 1934
    Meyer, K., and Hobby, G.L., “Chaffee, E., Relationship between spreading factor and hyaluronidase”, Proc. Soc. Exp. Biol. Med., 44, 294-296, 1940
    Meyer, K., “Hyaluronidase”, The Enzymes, Academic Press: New York, 307-320, 1971
    Mishra, P., Akhtar, M.S., and Bhakuni, V., “Unusual structural features of the bacteriophage-associated hyaluronate lyase (hylp2)”, J. Biol. Chem., 281, 7143-7150, 2006
    Miyazaki, T., Yomota, C., and Okada, S., “Change in molecular weight of hyaluronic acid during measurement with a cone-plate rotational viscometer”, J. Appl. Polym. Sci., 67, 2199-2206, 1998
    Miyazaki, T., Yomota, C., and Okada, S., “Ultrasonic depolymerization of hyaluronic acid, polymer degradation and stability”, Polym. Degrad. Stab., 74, 77-85, 2001
    Nakano, T., and Sim, J.S., “Chemical composition of glycosaminoglycan fractions from the comb and wattle of single comb white leghorn roosters”, Poult Sci, 70, 2524-2528, 1991
    Nakamura, K., Yokohama, S., Yoneda, M., Okamoto, S., Tamaki, Y., Ito, T., Okada, M., Aso, K., and Makino, I., “High, but not low, molecular weight hyaluronan prevents T-cell-mediated liver injury by reducing proinflammatory cytokines in mice”, J. Gastroenterol., 39, 346-354, 2004
    Noble, P.W., Mckee, C.M., Cowman, M., and Shin, H.S., “Hyaluronan fragments activate an NF-kappa B/I-kppa B alpha autoregulatory loop in murine macrophages”. J Exp.Med., 183, 2373-2384, 1996
    Pan, B.F., Gao, F., and Gu, H.C., “Dendrimer modified magnetite nanoparticles for protein immobilization”, J. Colloid Interface Sci., 284, 1-6, 2005
    Peng, Z.G., Hidajat, K., and Uddin, M.S., “Selective and sequential adsorption of obvine serum albumin and lysozyme from a binary mixture on nanosized magnetic particles”, J. Colloid. Interface Sci., 281, 11-17, 2005
    Peniche, H., Osorio, A., Acosta, N., Campa A.D.L., and Peniche, C., “Preparation and characterization of superparamagnetic chitosan micropheres: application as a support for the immobilization of tyrosinase”, J. Appl. Polym. Sci., 98, 651-657, 2005
    Porath, J., Carisson, L., Olsson, I., and Belfrage, G., “Metal chelate affinity chromatography, a new approach to protein fractionation”, Nature, 258, 598-599, 1975
    Rahmanian, M., Pertoft, H., Kanda, S., Christofferson, R., Claesson-Welsh, L., and Heldin, P., “Hayluronan oiligosaccharides induce tube formation of a brain endothelial cell line in vitro”, Exp. Cell Res., 237, 223-230, 1997
    Reissig, J.L., Strominger, J.L., and Leloir, L.F., “A modified colorimetric method of the estimation of N-acetylamino sugars”, J. Biol, Chem., 217, 959-966, 1955
    Rehakova, M., Bakos, D., Soldan, M., and Vizarova, K., “Depolymerization reactions of hyaluronic acid in solution”, Int. J. Biol. Macromol., 16, 121-124, 1994
    Schiller J.G., Bowser A.M., and Feingold D.S., “Partial purification and properties of UDPG dehydrogenase from Escherichia coli”, Biochim. Biophys. Acta, 293, 1-10, 1973
    Scotter, J. E., “Secondary structures in hyaluronan solution: chemical and biological implications”, Ciba. Found. Symp., 143, 6-15, 1989
    Scott, J.E., Cummings, S., Brasst, A., and Cheni, Y., “Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation: hyaluronan is a very efficient network-forming polymer”, Biochem. J., 274, 699-705, 1991
    Scott, J. E., “Secondary and tertiary structures of hyaluronan in aqueous solution. some biological consequences”, Glycoforum., 1998, http://www. glycoforum. gr.jp/science/hyaluronan/HA02/HA02E.html
    Smith, N.L., Taylor, E.J., Lindsay, A.M., Charnock, S.J., Turkenburg, J.P., Dodson, E.J., Davies, G.J., and Black, G.W., “Structure of a group A Streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded β-helix”, Proc. Natl. Acad. Sci. USA, 102, 17652-17657, 2005
    Solursh, M., Hardingham, T.E., Hascall, V.C. and Kimura, J.H., “Separate effects of exogenous hyaluronic acid on proteoglycan synthesis and deposition in percellular matrix by cultured chick embryo limb chondrocytes”, Dev. Boil., 75, p121-129, 1980
    Song, M., Kim, Y., Moon, W.K., and Yoon, B.W., “Comparative evaluation of three superparamagnetic iron oxide nanoparticles, feridex, MION-47 and tat-CLIO, to label human neural stem cells”, J. Cereb. Blood Flow Metab., 25, 514, 2005
    Stamenkovic, I., and Aruffo, A., “Hyaluronic acid receptors”, Methods Enzymol., 245, 195-216, 1994
    Suen, S.Y., Liu, Y.C., and Chang, C.S., “Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species”, J. Chromatogr. B., 797, 305-319, 2003
    Sugahara, K.N., Hirata, T., Hayasaka, H., Stern, R., Murai, T., and Miyasaka, M., “Tumor cells enhance their own CD44 cleavage and motility by generating hyaluronan fragments”, J. Biol. Chem., 281, 5861-5868, 2006
    Suh, K.Y., Yang J.M., Khademhosseini, A., Berry, D., Tran, T.T., Park, H., and Langer, R., “Characterization of chemisorbed hyaluronic acid directly immobilized on solid substrates”, J. Biomed. Mater. Res. B: Appl. Biomater., 72, 292-298, 2005
    Takahashi, Y., Li, L., Kamiryo, M., Asterious, T., Moustakas, A., Yamashita, H., and Heldin, P., “Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CSCL1/GRO1-dependent manner”, J. Biol. Chem., 280, 24195, 2005
    Tartaj, P., and Serna, C.J., “Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites”, J. Am. Chem. Soc., 125, 15754-15755, 2003
    Termeer, C.C., Hennies, J., and Voith, U., “Oligosaccharides of hyaluronan are potent activators of dendrititc cells”, J. Immunol, 165, 1863-1870, 2000
    Tlapak-Simmons Valarie L., Kempner, E.S., Baggenstoss, B.A., and Weigel, P.H., ”The active Streptococcal hyaluronan synthases (HASs) contain a sngle HAS monomer and multiple cardiolipin molecules”, J. Biol. Chem., 273, 26100-26109, 1998
    Tokita, Y., and Okamoto, A., “Hydrolytic degradation of hyaluronic acid”, Polym. Degrad. Stab., 48, 269-273, 1995
    Toole, P. B., “Hyaluronan in morphogenesis”, Semin. Cell Dev. Biol., 12, 79-87, 2001
    Tufvesson, B., Tufvesson, M., Lillpers, K, Johansson, K. and Wilhelmson, M., “Single-step divergent selection for male comb shape in two white leghorn lines”, Bri. Poult. Sci, 40, 209-216, 1999
    Uchiyama, H., Dobashi, Y., Ohkouchi, K., and Nagasawa, K., “Chemical change involved in the oxidative reductive depolymerization of hyaluronic acid”, J. Biol. Chem., 265, 7753-7759, 1990
    Ueda, E.K.M., Gout, P.W., and Morganti, L., “Current and prospective applications of metal ion-protein binding”, J. Chromatogr. A, 988, 1-23, 2003
    Weigel, P.H., Hascall, V.C., and Tammi, M, “Hyaluronan synthases”, J. Biol. Chem., 272, 13997-14000, 1997
    Weigel, P.H., “Bacterial hyaluronan synthase”, GlycoScience: Science of Hyaluronan HA06, 1998
    Weissmann, B., and Meyer, K., “The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord”, J. Am. Chem. Soc., 76, 1753-1757, 1954
    West, D.C., Hampson, I.N., Arnold, F., and Kumar, S., “Angiogenesis induced by degradation products of hyaluronic acid”, Science, 228, 1324-1326, 1985
    West, D.C., and Kumar, S., “The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity”, Exp. Cell Res., 183, 179-196, 1989
    Widner, B., Behr, R., Doleen, S.V., Tang, M., Heu, T., Sloma, A., Sternberg, D. DeAngelis, P.L., Weigel, P.H., and Brown, S., “Hyaluronic acid production in Bacillus subtilis”, Appl. Enviromen. Microbial., 71, 3747-3752, 2005
    Wohlrab, W., and Reinhard, N., “Skin protection agents containing a fragment mixture produced from hyaluronic acid by hydrolysis”, United States Patent 6689349, 2000
    Xu, H., Ito, T., Tawada, A., Yamanokuchi, H., Isahara, K., Yoshida, K., Uchiyama, Y., and Asari, A., “Effect of hyaluronan oligosaccharides on the expression of heat shock protein 72”, J. Biol. Chem., 277. 17308-17314, 2002
    Xu, S., Song, Y., Sato, S., Miyata, I., Yamanaka, J., and Yonese, M., “Surface structures of adsorption layers of sodium hyaluronate and bovine serum albumin complexes on poly(-methyl-L-glutamate) film and their surface properties”, Colloid Polym. Sci, 283, 383-392, 2004
    Yoneda, M., Shimizu, S., Nishi, Y., Yamagate, M., Suzuk, S., and Kimata, K., “Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibrolasts that is conducive to cell proliferation”, J. Cell Science, 90, 275-286, 1988
    Zeng, C., Tole, B.P., Kinney, S.D., Kuo, J.W., and Stamenkovic, I. “Inhibition of tumor growth in vivo by hyaluronan oligomers”, Int. J. Cancer, 77, 396-410, 1998
    Zeng, Li, Luo, K., and Gong, Y., “ Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier”, J. Mol. Catal., 38, 24-30, 2006

    無法下載圖示 全文公開日期 2012/01/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE