簡易檢索 / 詳目顯示

研究生: 何帛運
Po-Yun Ho
論文名稱: 非晶相氧化鈷應用於電催化甘油氧化反應並選擇性生成二羥基丙酮
Selective Electro-oxidation of Glycerol to Dihydroxyacetone by Amorphous Co-oxides
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 蔡大翔
Dah-Shyang Tsai
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 氧化鈷電催化甘油氧化酸鹼度二羥基丙酮
外文關鍵詞: Co-oxides, glycerol electro-oxidation, pH, dihydroxyacetone
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究方向 2 第二章 文獻回顧 3 2.1 生質柴油的副產物—甘油 3 2.2 甘油反應成高經濟價值產物 5 2.3 甘油氧化反應 6 2.3.1 電催化甘油氧化反應 7 2.4 甘油氧化觸媒 9 2.4.1 貴金屬 9 2.4.2 過渡金屬 9 2.4.3 氧化鈷 10 2.4.4 非晶相觸媒 11 2.5金屬有機光化學沉積法(Photochemical metal organic deposition, PMOD) 13 第三章 實驗設備及方法 14 3.1 研究架構 14 3.2 實驗藥品、設備及分析儀器 15 3.3 CoOx觸媒製備流程 17 3.3.1 基材處理流程 17 3.3.2 PMOD製備CoOx觸媒流程 17 3.4 實驗原理介紹 18 3.4.1 儀器分析原理 18 3.4.1.1 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM) 18 3.4.1.2 場發射槍穿透式電子顯微鏡(Field-Emission Gun Transmission Electron Microscopy, FEG-TEM) 18 3.4.1.3 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 19 3.4.1.4 X光繞射儀(X-ray Diffraction, XRD) 19 3.4.1.5 拉曼光譜儀(Raman Spectrometer) 19 3.4.1.6 氣相層析儀(Gas Chromatography, GC) 20 3.4.1.7 高效能液相層析儀(High performance Liquid Chromatography, HPLC) 21 3.4.1.8 聚焦離子束與電子束顯微系統(Focused Ion Beam, FIB) 22 3.4.2 電化學原理 22 3.4.2.1 線性掃描伏安法(Linear sweep Voltammetry, LSV) 23 3.4.2.2 循環伏安法(Cyclic Voltammetry, CV) 23 3.4.2.3 計時安培測定法(Chrono-amperometry, CA) 23 第四章 實驗結果與討論 24 4.1 材料特性分析 24 4.1.1 結構分析 24 4.1.2 表面形態分析 28 4.2 電化學表現分析 29 4.3 CoOx反應前後材料特性分析 31 4.4 產物分析 34 4.4.1 液相產物分析 34 4.4.2 氣相產物分析 35 4.5 不同參數之影響分析 39 4.5.1 退火溫度 39 4.5.1.1 材料特性分析 39 4.5.1.2 電化學及產物分析 41 4.5.2 施加電位 46 4.5.3 甘油濃度 49 4.5.4 pH值 52 4.6 CoOx反應機制 57 4.7 GEOR反應路徑 61 4.7.1 pH 7溶液 61 4.7.2 pH 9溶液 62 4.7.3 pH 13溶液 63 第五章 結論 71 參考資料 73 附錄 82

    [1] M.Simões, S.Baranton, C.Coutanceau, Electrochemical valorisation of glycerol, ChemSusChem. 5 (2012) 2106–2124.
    [2] M.A.Dasari, P.Kiatsimkul, W.R.Sutterlin, G.J.Suppes, Low-pressure hydrogenolysis of glycerol to propylene glycol, Appl. Catal. A Gen. 281 (2005) 225–231.
    [3] J.C.Yori, S.A.D’Ippolito, C.L.Pieck, C.R.Vera, Deglycerolization of biodiesel streams by adsorption over silica beds, Energy and Fuels. 21 (2007) 347–353.
    [4] A.Talebian-Kiakalaieh, N.A.S.Amin, K.Rajaei, S.Tarighi, Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes, Appl. Energy. 230 (2018) 1347–1379.
    [5] C.C.Zhou, J.N.Beltramini, Y.Fan, G.Q.M.Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev. (2008) 527–549.
    [6] C.Coutanceau, S.Baranton, R.S.B.Kouamé, Selective electrooxidation of glycerol into value-added chemicals: A short overview, Front. Chem. 7 (2019) 1–15.
    [7] C.Coutanceau, A.Zalineeva, S.Baranton, M.Simoes, Modification of palladium surfaces by bismuth adatoms or clusters: Effect on electrochemical activity and selectivity towards polyol electrooxidation, Int. J. Hydrogen Energy. 39 (2014) 15877–15886.
    [8] A.Zalineeva, A.Serov, M.Padilla, U.Martinez, K.Artyushkova, S.Baranton, C.Coutanceau, P.B.Atanassov, Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media, J. Am. Chem. Soc. 136 (2014) 3937–3945.
    [9] S.Gil, M.Marchena, C.María, L.Sánchez-silva, A.Romero, J.Luís, Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials, "Applied Catal. A, Gen. 450 (2013) 189–203.
    [10] L.Sánchez-silva, A.Romero, J.Luís, S.Gil, L.Mu, Synthesis and characterization of Au supported on carbonaceous material-based catalysts for the selective oxidation of glycerol, Chem. Eng. 172 (2011) 418–429.
    [11] S.Bee, A.Hamid, N.Basiron, W.A.Yehye, P.Sudarsanam, S.K.Bhargava, Nanoscale Pd-based catalysts for selective oxidation of glycerol with molecular oxygen : Structure-activity correlations, Polyhedron. 120 (2016) 124–133.
    [12] R.M.Painter, D.M.Pearson, R.M.Waymouth, Selective Catalytic Oxidation of Glycerol to Dihydroxyacetone **, Angew. Chem. (2010) 9456–9459.
    [13] W.Oberhauser, C.Evangelisti, C.Tiozzo, F.Vizza, R.Psaro, Lactic Acid from Glycerol by Ethylene-Stabilized Platinum-Nanoparticles, ACS Catal. 6 (2016) 1671–1674.
    [14] C.Zhang, T.Wang, X.Liu, Y.Ding, Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution, Chin. J. Catal. 37 (2020) 502–508.
    [15] Y.Su, Q.Xu, Q.Zhong, C.Zhang, S.Shi, C.Xu, Oxide (Co3O4, NiO, Mn3O4, MgO) promoted Au/C catalyst for glycerol electrooxidation in alkaline medium, Mater. Res. Bull. 64 (2015) 301–305.
    [16] A.Ashok, A.Kumar, Ag / Co3O4 as an effective catalyst for glycerol electro-oxidation in alkaline medium, Int. J. Hydrogen Energy. (2020).
    [17] J.Du, A.Xie, S.Zhu, Z.Xiong, X.Yu, 3D flower-like CoNi2S4/polyaniline with high performance for glycerol electrooxidation in an alkaline medium, New J. Chem. (2019) 10366–10375.
    [18] R.S.F.Jr, M.J.Giz, G.A.Camara, Influence of the local pH on the electrooxidation of glycerol on Palladium–Rhodium electrodeposits, J. Electroanal. Chem. 697 (2013) 15–20.
    [19] B.Liu, W.Xia, S.Wang, C.Xu, Z.Liu, Au/NiCo2O4/3D HPG (Three-Dimensional Hierarchical Porous Graphene) Composite as Electrocatalyst for Glycerol Electrooxidation in Alkaline Medium, Int. J. Electrochem. Sci. 13 (2018) 9493–9504.
    [20] A.Direct, G.Fuel, Glycerol Electro-Oxidation in Alkaline Media and Alkaline Direct Glycerol Fuel Cells, Catalysts. (2019) 9(12), 980.
    [21] Z.Zhang, L.Xin, J.Qi, Z.Wang, W.Li, Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst, Green Chem. 14 (2012) 2150–2152.
    [22] J.L.Bott-Neto, A.C.Garcia, V.L.Oliveira, N.E.DeSouza, G.Tremiliosi-Filho, Au/C catalysts prepared by a green method towards C3 alcohol electrooxidation: A cyclic voltammetry and in situ FTIR spectroscopy study, J. Electroanal. Chem. 735 (2014) 57–62.
    [23] L.Roquet, E.M.Belgsir, J.M.Léger, C.Lamy, Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: Potential and pH effects, Electrochim. Acta. 39 (1994) 2387–2394.
    [24] R.M.L.M.Sandrini, J.R.Sempionatto, G.Tremiliosi-Filho, E.Herrero, J.M.Feliu, J.Souza-Garcia, C.A.Angelucci, Electrocatalytic Oxidation of Glycerol on Platinum Single Crystals in Alkaline Media, ChemElectroChem. 6 (2019) 4238–4245.
    [25] C.Lohaus, J.Morasch, J.Brötz, A.Klein, W.Jaegermann, Investigations on RF-magnetron sputtered Co3O4 thin films regarding the solar energy conversion properties, J. Phys. D. Appl. Phys. 49 (2016).
    [26] S.Wu, J.Guo, The study of sensors market trends analysis based on social media, Sensors and Transducers. 159 (2013) 374–378.
    [27] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, G.Tremiliosi-filho, K.B.Kokoh, Glycerol oxidation on nickel based nanocatalysts in alkaline medium – Identification of the reaction products, J. Electroanal. Chem. 703 (2013) 56–62.
    [28] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, G.Tremiliosi-filho, K.B.Kokoh, Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium, Electrochim. Acta. 117 (2014) 255–262.
    [29] C.Liu, M.Hirohara, T.Maekawa, R.Chang, T.Hayashi, C.Y.Chiang, Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst – CuO, Appl. Catal. B Environ. 265 (2020) 118543.
    [30] N.Shi, W.Cheng, H.Zhou, T.Fan, M.Niederberger, Facile synthesis of monodisperse Co3O4 quantum dots with efficient oxygen evolution activity, Chem. Commun. 51 (2015) 1338–1340.
    [31] P.W.Menezes, A.Indra, D.González-Flores, N.R.Sahraie, I.Zaharieva, M.Schwarze, P.Strasser, H.Dau, M.Driess, High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity, ACS Catal. 5 (2015) 2017–2027.
    [32] X.Deng, H.Tüysüz, Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges, ACS Catal. 4 (2014) 3701–3714.
    [33] A.Indra, P.W.Menezes, C.Das, C.Göbel, M.Tallarida, D.Schmeiβer, M.Driess, A facile corrosion approach to the synthesis of highly active CoOx water oxidation catalysts, J. Mater. Chem. A. 5 (2017) 5171–5177.
    [34] F.Jiao, H.Frei, Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts, Energy Environ. Sci. 3 (2010) 1018–1027.
    [35] L.Zhou, M.Guo, Y.Li, Q.Gu, W.Zhang, C.Li, F.Xie, D.Lin, Q.Zheng, One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH)2 nanowires grown on a Ni foam for a high-efficiency oxygen evolution reaction, Chem. Commun. 55 (2019) 4218–4221.
    [36] X.Cui, W.Guo, M.Zhou, Y.Yang, Y.Li, P.Xiao, Y.Zhang, X.Zhang, Promoting Effect of Co in NimCon (m + n = 4) Bimetallic Electrocatalysts for Methanol Oxidation Reaction, ACS Appl. Mater. Interfaces. 7 (2015) 493–503.
    [37] S.Sun, L.Sun, S.Xi, Y.Du, M.U.Anu Prathap, Z.Wang, Q.Zhang, A.Fisher, Z.J.Xu, Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline, Electrochim. Acta. 228 (2017) 183–194.
    [38] Z.Q.Hu, A.M.Wang, H.F.Zhang, Modern Inorganic Synthetic Chemistry: Second Edition, (2017) 641–667.
    [39] W.Cai, R.Chen, H.Yang, H.B.Tao, H.Y.Wang, J.Gao, W.Liu, S.Liu, S.F.Hung, B.Liu, Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy, Nano Lett. 20 (2020) 4278–4285.
    [40] M.Driess, Amorphous outperforms crystalline nanomaterials : surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting †, J. Mater. Chem. A. 7 (2019) 15749–15756.
    [41] B.S.Simon, Photochemical Metal Organic Deposition of Metal Oxides, Siman Fraser Univ. (2004).
    [42] M.Mathankumar, S.Anantharaj, A.K.Nandakumar, S.Kundu, B.Subramanian, Potentiostatic phase formation of β-CoOOH on pulsed laser deposited biphasic cobalt oxide thin film for enhanced oxygen evolution, J. Mater. Chem. A. 5 (2017) 23053–23066.
    [43] B.S.Yeo, A.T.Bell, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen, J. Am. Chem. Soc. 133 (2011) 5587–5593.
    [44] S.R.Gawali, A.C.Gandhi, S.S.Gaikwad, J.Pant, T.S.Chan, C.L.Cheng, Y.R.Ma, S.Y.Wu, Role of cobalt cations in short range antiferromagnetic Co3O4 nanoparticles: A thermal treatment approach to affecting phonon and magnetic properties, Sci. Rep. 8 (2018) 1–12.
    [45] C.Alex, S.C.Sarma, S.C.Peter, N.S.John, Competing Effect of Co3+- reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium, ACS Appl. Energy Mater. 3 (2020) 5439–5447.
    [46] A.Diallo, A.C.Beye, T.B.Doyle, E.Park, M.Maaza, Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties, Green Chem. Lett. Rev. 8 (2015) 30–36.
    [47] B.Marczewska, Transmission Electron Microscopy (TEM), BUNSEN-MAGAZIN. (2010).
    [48] A.Ashok, A.Kumar, J.Ponraj, S.A.Mansour, F.Tarlochan, Single Step Synthesis of Porous NiCoO2 for Effective Electrooxidation of Glycerol in Alkaline Medium, J. Electrochem. Soc. 165 (2018) J3301–J3309.
    [49] Y.Liu, J.A.Koza, J.A.Switzer, Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction, Electrochim. Acta. 140 (2014) 359–365.
    [50] A.Moysiadou, S.Lee, C.S.Hsu, H.M.Chen, X.Hu, Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step, J. Am. Chem. Soc. 142 (2020) 11901–11914.
    [51] A.J.Bloom, A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst, Green Chem. 19 (2017) 1958–1968.
    [52] G.A.El-Nagar, I.Derr, T.Kottakkat, C.Roth, Auspicious Metal-Doped-Cu2O/Cu Dendrite (M=Ni, Co, Fe) Catalysts for Direct Alkaline Fuel Cells: Effect of Dopants, ECS Trans. 80 (2017) 1013–1022.
    [53] H.Rostami, A.Omrani, A.A.Rostami, On the role of electrodeposited nanostructured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alkaline media, Int. J. Hydrogen Energy. 40 (2015) 9444–9451.
    [54] C.Zhai, J.Hu, H.Gao, L.Zeng, M.Xue, Z.Liu, Nano-engineered hexagonal PtCuCo nanocrystals with enhanced catalytic activity for ethylene glycol and glycerol electrooxidation, J. Taiwan Inst. Chem. Eng. 93 (2018) 477–484.
    [55] A.Ashok, A.Kumar, Ag/Co3O4 as an effective catalyst for glycerol electro-oxidation in alkaline medium, Int. J. Hydrogen Energy. 46 (2020) 4788–4797.
    [56] B.Habibi, N.Delnavaz, Electrooxidation of glycerol on nickel and nickel alloy (Ni-Cu and Ni-Co) nanoparticles in alkaline media, RSC Adv. 6 (2016) 31797–31806.
    [57] A.Lamouchi, I.BenAssaker, R.Chtourou, Effect of annealing temperature on the structural, optical, and electrical properties of MoS2 electrodeposited onto stainless steel mesh, J. Mater. Sci. 52 (2017) 4635–4646.
    [58] Z.Li, S.Bai, C.Huang, J.Lv, J.Han, Thermal decomposition and cobalt species transformation of carbon nanotubes supported cobalt catalyst for fischer-Tropsch synthesis, J. Nat. Gas Chem. 1 (2011) 328–331.
    [59] J.C.Phys, X.Yao, J.Liu, W.Wang, F.Lu, W.Wang, Origin of OER catalytic activity difference of oxygen-deficient perovskites A2Mn2O5(A = Ca , Sr ): A theoretical study, J. Chem. Phys. 5 (2017) 224703.
    [60] J.Liu, H.Liu, H.Chen, X.Du, B.Zhang, Z.Hong, S.Sun, W.Wang, Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach, Adv. Sci. 1901614 (2020).
    [61] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, G.Tremiliosi-Filho, K.B.Kokoh, Glycerol oxidation on nickel based nanocatalysts in alkaline medium - Identification of the reaction products, J. Electroanal. Chem. 703 (2013) 56–62.
    [62] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, G.Tremiliosi-Filho, K.B.Kokoh, Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium, Electrochim. Acta. 117 (2014) 255–262.
    [63] J.Qin, Z.Liu, D.Wu, J.Yang, Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries, Appl. Catal. B Environ. 278 (2020) 119300.
    [64] L.Su, W.Jia, A.Schempf, Y.Lei, Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium, Electrochem. Commun. 11 (2009) 2199–2202.
    [65] E.Habibi, H.Razmi, Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media, Int. J. Hydrogen Energy. 37 (2012) 16800–16809.
    [66] J.dePaula, D.Nascimento, J.J.Linares, Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor, J. Appl. Electrochem. 45 (2015) 689–700.
    [67] P.Rodriguez, Y.Kwon, M.T.M.Koper, The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst, Nat. Chem. 4 (2012) 177–182.
    [68] C.Dai, L.Sun, H.Liao, B.Khezri, R.D.Webster, A.C.Fisher, Z.J.Xu, Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles, J. Catal. 356 (2017) 14–21.
    [69] G.Catalysis, Y.Kwon, S.C.S.Lai, P.Rodriguez, M.T.M.Koper, Electrocatalytic Oxidation of Alcohols on Gold in Alkaline Media : Base or Gold Catalysis?, J. Am. Chem. Soc. 133 (2011) 6914–6917.
    [70] C.B.Rasrendra, B.A.Fachri, I.G.B.N.Makertihartha, Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water, ChemSusChem. 40132 (2011) 768–777.
    [71] E.Jolimaitre, D.Delcroix, N.Essayem, C.Pinel, M.Besson, Dihydroxyacetone conversion into lactic acid in an aqueous medium in the presence of metal salts: influence of the ionic thermodynamic equilibrium on the reaction performance, Catal. Sci. Technol. 8 (2018) 1349–1356.
    [72] A.J.Bloom, A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation, Green Chem. 19 (2017) 1958–1968.

    無法下載圖示 全文公開日期 2026/08/23 (校內網路)
    全文公開日期 2026/08/23 (校外網路)
    全文公開日期 2026/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE