簡易檢索 / 詳目顯示

研究生: 王宥竣
You-Jiun Wang
論文名稱: 以超穎物質結合開關二極體實現頻率可重置主動集成天線
A Study of Frequency Reconfigurable Active Integrated Antennas Using Metamaterial Combination with Switching Diode
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
廖文照
Wen-Jiao Liao
陳晏笙
Yen-Sheng Chen
林坤佑
Kun-You Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 自振式主動集成天線超穎物質複合式左右手傳輸線零階共振器負μ共振器可重置化天線交錯耦合對開關二極體
外文關鍵詞: self-oscillating active antenna, metamaterial, composite right/left handed transmission line, zeroth-order resonator, negative μ resonator, cross-coupled pair, frequency reconfigurable antenna
相關次數: 點閱:418下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之主旨,乃研製兩款新型頻率可重置主動集成天線,該創新設計之基礎以開關二極體結合超穎物質實現頻率可重置超穎物質共振器,成功整合兩超穎物質共振器於單一天線結構體上,透過開關二極體控制左手對地電感,使主動天線可於負導磁率(MNG)共振器模態與左右手複合傳輸線(CRLH)模態之間切換,於不改變電晶體偏壓之情況下,僅透過控制開關二極體之偏壓便實現頻率可重置特性。
本論文首先利用單顆電晶體以迴授電路架構結合頻率可重置超穎物質共振器,利用偏壓控制開關二極體之開與關,使主動天線於負導磁率共振器之+1模態與左右手複合共振器之+1模態分別產生穩定振盪於不同操作頻率,成功實現頻率可重置之特性。
其次,為充分發揮超穎物質可使共振器之物理尺寸與操作頻率脫鉤之特性,吾人嘗試以交錯耦合對電路結合頻率可重置超穎物質,滿足超穎物質零階共振器之振盪條件,利用偏壓控制開關二極體之開與關,使主動天線於負導磁率共振器之+1模態與左右手複合共振器之零階模態分別產生穩定振盪於不同操作頻率,成功實現另一款頻率可重置主動集成天線。


This study focuses on designing two types of frequency reconfigurable active integrated antenna. This novel idea is based on using switching pin diode with metamaterial in order to realize frequency reconfigurable metamaterial resonator. Two metamaterials are successfully integrated on single antenna structure. By only adjusting the voltage of pin diode to control left-handed shunt inductor and keep the bias voltage of transistor as the same, the active antenna can operate between negative μ resonator (MNG) mode and composite right/left handed (CRLH) mode.
Firstly, frequency reconfigurable active integrated antenna is proposed. This novel layout is based on the feedback oscillator network using frequency reconfigurable metamaterial resonator integrated with single transistor. By controlling the switching diode, the oscillation steadily appears at two distinct frequencies corresponding to +1 mode of MNG resonator and CRLH resonator.
Secondly, with the characteristic of metamaterial that the size and operating frequency are not unrelated, frequency reconfigurable metamaterial resonator in cross couple pair oscillator is studied. As long as adjusting the voltage to control the status of pin diode in order to achieve the condition of zeroth-order oscillator, the active antenna can operate at two distinct frequencies corresponding to the +1 mode of MNG resonator and zeroth-order mode of CRLH resonator. In the second study, the other frequency reconfigurable active integrated antenna is successfully realized.

摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 以開關二極體實現頻率可重置自振式主動集成天線 6 2.1 前言 6 2.2 微波電晶體震盪器 7 2.3 自振式主動集成天線設計流程 8 2.4超穎物質共振器結合開關二極體之設計 10 2.4.1超穎物質共振器之原理 10 2.4.2超穎物質共振器結合開關二極體 12 2.5頻率可重置自振式主動集成天線設計 14 2.5.1超穎物質共振器之設計 14 2.5.2頻率可重置天線輻射體之設計 15 2.5.3頻率可重置天線輻射體模擬之色散響應 18 2.5.4 頻率可重置主動集成天線之設計 20 2.5.5模擬與量測結果 22 2.6結語 30 第三章 以超穎物質+1模態與零階模態實現頻率可重置主動集成天線 31 3.1 前言 31 3.2 交錯耦合對結合超穎物質 32 3.2.1交錯耦合對振盪器 32 3.2.2零階共振器與交錯耦合對之結合 34 3.3 頻率可重置自振式主動集成天線設計 37 3.3.1交錯耦合對自振式主動天線設計流程 37 3.3.2 超穎物質共振器之設計 37 3.3.3 頻率可重置天線輻射體之設計 40 3.3.4 頻率可重置天線輻射體之色散響應 42 3.3.5頻率可重置主動天線之設計 45 3.3.6 模擬與量測結果 49 3.4 結語 57 第四章 結論 58 4.1 總結 58 4.2 未來發展 59 參考文獻 60

[1] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today's intranet of things to a future internet of things: a wireless- and mobility-related view,” IEEE Wireless Communications, vol. 17, pp. 44–51, 2010.
[2] M. Zhang, F. Sun, and X. Cheng, “Architecture of internet of things and its key technology integration based-on RFID, ” in Proc. Int. Symp. on Computational Intelligence Design, 2012, pp. 294–297.
[3] M.-H. Lee, C.-Y. Yao, and H.-C. Liu, “Passive tag for multi-carrier RFID systems,” in Proc. IEEE 17th Int. Conf. on Parallel and Distributed Systems, 2011, pp. 872–876.
[4] P. V. Nikitin, S. Ramamurthy, R. Martinez, and K. V. S. Rao, “Passive tag-to-tag communication,” in Proc. IEEE Int. Conf. on RFID, 2012, pp. 177–184.
[5] J. Shi, J. X. Chen, and Q. Xue, “A differential voltage-controlled integrated antenna oscillator based on double-sided parallel-strip line,” IEEE Trans. Microw. Theory Techn., vol. 56, pp. 2207–2212, Oct. 2008.
[6] H. P. Moyer and R. A. York, “Active cavity-backed slot antenna using MESFETs,” IEEE Microw. Guided Wave Lett., vol. 3, pp. 95–97, 1993.
[7] W. Duerr, W. Menzel, and H. Schumacher, “A low-noise active receiving antenna using a SiGe HBT,” IEEE Microw. Guided Wave Lett., vol. 7, no. 3, pp.63–65, Mar. 1997.
[8] T. D. Ormiston, P. Gardner, and P. S. Hall, “Compact low noise receiving antenna,” Electron. Lett., vol. 34, no. 14, pp. 1367–1368, Jul. 1998.
[9] C. M. Montiel, L. Fan, and K. Chang, “An X-band self-mixing oscillator antenna for transceiver and spatial power-combining applications,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 10, pp. 1546–1551, Oct. 1998.
[10] J. C. Liu, P. C. Lu, D. C. Chang, and C. C. Chang, “Double-ring active microstrip antenna and self-mixing oscillator in C-band,” IEE Proc. Microw. Antennas Propag., vol. 147, no. 6, pp. 479–482, Dec. 2000.
[11] D. Segovia-Vargas, D. Castro-Galan, L. E. Garcia-Munoz, and V. Gozalez-Posadas, “Broadband active receiving patch with resistive equalization,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 56–64, Jan. 2008.
[12] H. Kim and Y. J. Yoon, “Wideband design of the fully integrated transmitter front-end with high power added efficiency,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 916–924, May 2007.
[13] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip patch antennas,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 201–206, Jan. 2002.
[14] C.-H. Wu and T.-G. Ma, “Miniaturized self-oscillating active integrated antenna with quasi-isotropic radiation,” IEEE Trans. Antennas Propag, vol.62 ,no.2 , pp.933-936 , Feb. 2014.
[15] Y.-Y. Lin, C.-H. Wu, and T.-G. Ma, “Miniaturized self-oscillating annular ring active integrated antennas,” IEEE Trans. Antennas Propag.,vol. 59, no. 10, pp. 3597–3606, Oct. 2011.
[16] C.-H. Wu, and T.-G. Ma, “Self-oscillating dual-ring active integrated antenna” IEEE Int. Symp. on Antennas and Propagation Digest, 2011, pp. 2457-2460.
[17] W. J. Tseng and S. J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 530–535, May 1998.
[18] K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-fed active patch antenna,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 64–66, Feb. 2000.
[19] C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls, and F.A.Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1236–1241, May 2008.
[20] Y. Chen and Z. Chen, “A dual-gate FET subharmonic injection-locked self-oscillating active integrated antenna for RF transmission,” IEEE Micorw. Wireless Compon. Lett., vol. 13, pp. 199–201, Jun. 2003.
[21] M. D. Upadhayay, A. Basu, M. P. Abegaonkar, and S. K. Koul, “Active integrated antenna using BJT with floating base,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 4, pp. 202-204, Apr. 2013.
[22] C.-H. Wu and T.-G. Ma, “Self-oscillating semi-ring active integrated antenna with frequency reconfigurability and voltage-controllability,” IEEE Trans. Antennas Propag, vol.61 ,no.7 , pp.3880-3885 , Jul. 2013.
[23] C.-H. Wu and T.-G. Ma, “Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility,” IEEE Trans. Antennas Propag, vol.62 ,no.12 , pp.5992-5998 , Dec. 2014.
[24] A. Lai, C. Carloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.
[25] G. V. Eleftheriades, “Enabling RF/microwave devices using negative refractive-index transmission-line (NRI-TL) metamaterials,” IEEE Antennas Propag. Mag., vol. 49, no. 2, pp. 34–51, Apr. 2007.
[26] C.-J. Lee, H. Wei, A. Gummalla, and M. Achour, “Small antenna based on CRLH structures: Concept, design, application,” IEEE Antennas Propag. Mag., vol. 53, no. 2, pp. 10–25, Apr. 2011.
[27] Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot antennas based on negative order resonance,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3856–3864, 2010.
[28] M. A. Antoniades and G. V. Eleftheriades, “A folded-monopole model for electrically small NRI-TL metamaterial antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 425–428, Oct. 2008.
[29] A. Sanada, C. Carloz, and T. Itoh, “Novel zeroth-order resonator composite right/left handed transmission line resonators,” in IEEE Asia Pacific Conf., Seoul, Korea, Dec. 2003, pp. 1588-1591.
[30] 劉志宏, 以超穎物質實現自振式主動天線及其多載射頻辨識系統之應用, 國立台灣科技大學電機工程研究所, 碩士論文, 民國104.
[31] Y.-W. Chang and T.-G. Ma, “Zeroth-order self-oscillating active integrated antenna using cross-coupled pair,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp.5011-5018, Oct. 2017.
[32] 張祐瑋, 以零階共振器實現自振式主動集成天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國105.
[33] Z.-H. Liu and T.-G. Ma, “Frequency reconfigurable self-oscillating active integrated antenna using metamaterial resonators,” in Proc. IEEE 5th Asia-Pacific Conf. Antennas Propag. (APCAP), pp. 427–428, 2016.
[34] Y. Dong and T. itoh, “Promising future of metamaterials,” IEEE Microwave Magazine, vol. 13, no.2, pp.39-56, March-April. 2012.

QR CODE