簡易檢索 / 詳目顯示

研究生: 余漢浚
Han-jun Yu
論文名稱: 改善五軸加工路徑平順度之刀具軸向計算公式推導
The Calculation of Tool-axis Orientations to Smooth the Tool Paths of Five-axis Machining
指導教授: 林清安
Ching-an Lin
口試委員: 簡孟樹
Meng-shu Jian
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 五軸加工CAD/CAM刀具路徑刀具軸向
外文關鍵詞: CAD/CAM, Five-axis machining, Toolpath, Tool-axis orientation
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業界越來越多公司使用五軸加工機進行複雜零件之加工,其目的是為了讓加工品質更好,但是要使加工品質提昇,其刀具路徑的平順度是很重要的,因此本論文依照五軸工法的特性,將造型複雜零件的幾何區分為下列五種類型:凸島形、U形、凹圓形、孔形與圓環形,然後針對每一類型的幾何形狀,提出刀具軸向的設定原則與計算公式,以利提昇刀具路徑的平順度,其中刀具軸向的設定原則包括:From point, From line, Toward point及Toward line,而刀具軸向的計算公式是以刀軸偏移角度最小化為考量點,利用刀具與工件之間的相對位置進行數學計算,得到刀具旋轉偏擺旋轉中心點與偏擺旋轉軸的位置,使加工五種幾何形狀的刀具路徑能夠降低提刀次數與提昇平順度。除了提出刀具軸向的計算公式外,本研究並分別使用軟體自動計算刀具軸向的路徑與使用本論文方法所計算出的路徑,實際使用五軸工具機進行加工驗證,比對兩者的表面品質與過切的情況。


    More and more companies in machining communities utilize five-axis machines to carry out material processing of complex components. The purpose of such machines is to ensure better processing quality. However, in order to enhance the processing quality, the smoothness of toolpath for five-axis machining is very important. Therefore, in accordance with the characteristics of five-axis toolpath strategies, this thesis has divided the geometry of typical to-be-machined parts into the following five types: convex shape, U-shape, concave shape, hole shape, and annular shape. Subsequently, for each type of the five geometric shapes, this study proposes the setting principles and calculation equations of tool-axis orientation in order to facilitate the upgrade of the smoothness of toolpath. In which, the setting principles of tool-axis orientation include: From point, From line, Toward point and Toward line; whereas the calculation equations of tool-axis orientation are based on the consideration of minimizing the angle of tool-axis orientation. The latter uses the relative position between the tool and the workpiece to perform mathematical calculations in order to obtain the locations for the pivot point and the pivot axis of tool-axis orientation, so that the toolpath for processing the five geometric shapes can reduce the number of retracts and improve the surface smoothness. In addition to proposing the calculation equations for tool-axis orientation, this study adopted software packages to automatically calculate the toolpath of five-axis machining and used the toolpath that is calculated by the method proposed in this thesis respectively; as well as actually utilizing a five-axis NC machine to conduct machining verifications to compare the surface quality and the overcuts scenarios of both approaches.

    中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的與方法 3 1.3 文獻探討 4 1.4 論文架構 6 第二章 五軸加工原理與POWERMILL加工概念 8 2.1 五軸加工原理 8 2.2 POWERMILL加工概念 12 2.2.1 操作介面 13 2.2.2 PowerMILL工法介紹 14 2.3 刀具軸向介紹 15 第三章 避免干涉之刀軸偏移方法 20 3.1 計算FROM POINT之偏擺旋轉點 20 3.2 計算TOWARD POINT之偏擺旋轉點 25 3.3 實例驗證 30 3.3.1 實例驗證一 30 3.3.2 實例驗證二 45 3.4 刀具軸向偏移原則 55 第四章 刀具路徑改善 64 4.1 單車頭盔模具介紹 64 4.2 POWERMILL加工前置設定 65 4.3 幾何特徵加工 67 4.3.1 凸島形加工 68 4.3.2 U形加工 69 4.3.3 凹圓形加工 71 4.3.4 孔形加工 72 4.3.5 圓環形加工 73 4.4 NC CODES提刀 74 4.5 刀軸偏移方法進行刀具路徑修改 77 4.5.1 凸島形刀軸設計 77 4.5.2 U形刀具軸向設計 80 4.5.3 凹圓形刀具軸向設計 83 4.5.4 孔形刀具軸向設計 85 4.5.5 圓環形刀具軸向設計 86 第五章 實物加工 89 5.1 實驗設備及刀具 89 5.2 實物加工 90 5.2.1 凸島形加工 90 5.2.2 U形加工 91 5.2.3 凹圓加工 92 5.2.4 孔形加工 93 5.2.5 圓環形加工 95 第六章 結論與未來研究方向 96 6.1 結論 96 6.2 未來研究方向 97 參考文獻 98

    [1] 周育政,「PC散熱風扇之電腦輔助多軸NC加工」(1999),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    [2] 林子寬,「鞋楦精加工4軸NC程式產生」(2004),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    [3] Morishige, K., Kase, K. and Takeuchi, Y., (1997) “Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining,” International Journal of Advanced Manufacturing Technology, Vol. 13, pp. 393-400.
    [4] Hsueh, Y.W., Hsueh, M.H. and Lien, H.C. (2007) “Automatic selection of cutter orientation for preventing the collision problem on five-axis machining,” International Journal of Advanced Manufacturing Technology, Vol. 32, No. 1-2, pp. 66-77.
    [5] 簡孟樹,「無干涉五軸加工路徑之高效率計算」(2004),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    [6] 陳建銘,「不同傾角銑刀對加工特性之影響」(2011),碩士論文,國立勤益科技大學,台中市。
    [7] 傅甘己,「刀具剛性與切削精度關係之研究」(2004),碩士論文,中原大學,桃園縣。
    [8] Gong, H. and Wang, N (2011), “5-axis flank milling free-form surfaces considering constraints,” Computer Aided Design, Vol. 43, No. 6, pp. 563-572.
    [9] 侯垣裴,「五軸工具機牙冠加工之研究」(2009),碩士論文,國立中正大學機械工程研究所,嘉義。
    [10] 吳維軒,「五軸曲面加工時工具機構型判斷之研究」(2006),碩士論文,國立成功大學機械工程研究所,台南。
    [11] Chiou, J.C. and Lee, Y.S. (2011), “A machining potential field approach to tool path generation for multi-axis sculptured surface machining,” Computer Aided Design, Vol. 34, No. 5, pp. 357-371.
    [12] Chen, H.P, Kuo, H.H. and Tsay, D.M. (2009), “Removing tool mark of blade surfaces by smoothing five-axis point milling cutter paths,” Journal of Materials Processing Technology, Vol. 209, No. 17, pp. 5810-5817.
    [13] http://www.quaser.com/tw/d-6.htm

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE