簡易檢索 / 詳目顯示

研究生: 翁澄志
Cheng-Chih Weng
論文名稱: 感溫離子可逆型水膠於傷口敷料之應用
Thermal and ionic reversible hydrogel for wound dressing application
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 鄭智嘉
Chih-Chia Cheng
高震宇
Chen-Yu Kuo
林宣因
Hsuan-Yin Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 藻酸鹽泊洛沙母水膠傷口敷料
外文關鍵詞: alginate, pluronic f-127, hydrogel, wound dressing
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傷口敷料是傷口照護中重要的一環,傷口敷料的最大特點是能使傷口保持濕潤環境、減少
疤痕的形成、舒緩患者的疼痛以及避免傷者的體液流失過快。然而當傷口敷料敷在傷口一段時
間之後,吸收組織液之後會與皮膚產生沾黏,在移除的同時可能會造成傷口的二次傷害以及患
者的不適。本研究欲開發具有可逆性質的水膠作為傷口敷料,利用其可逆性質使得水膠可以從
傷口上移除。Pluronic F-127 是一種感溫可逆的水膠材料,它的成膠原理與其濃度與溫度息息相
關,隨著溫度增長它會交聯形成凝膠,而到低溫時則會回復為溶液,除此之外,藻酸鹽(Alginate
acid)也是一種離子成膠的凝膠材料,其本身帶負電因此可以包覆帶正電的材料如小分子蛋白。
預期以 Pluronic F-127 與藻酸鹽作為傷口敷料,可以利用雙重特性製作出感溫離子可逆型傷口
敷料。因此凝膠擁有兩種不同成膠性質的材料在相互作用,實驗中使用 DLS、流變儀以及 sol-gel
transition 來觀察兩種成膠方式是否會相互影響成膠性質、機械強度以及可逆性。另外,利用掃
描 Pluronic 及 Alginate 拉曼訊號我們可以對此複合凝膠做 3D 成像,結果顯示此兩種材料呈現
層狀結構堆疊,同時掃描式電子顯微鏡分析顯示此複合型凝膠會在表面形成孔洞。此凝膠除具
備感溫離子可逆特性外同時也具備生物可相容性,進一步傷口復原的實驗中,包覆血管內表皮
生長因子(VEGF)之可逆凝膠有助於加速傷口復原及減少二次傷口產生。


Wound dressings are an important part of wound care. The most prominent feature of
wound dressings is to keep the wounds moist, reduce the formation of scars, relieve the pain of the patients and avoid excessive fluid loss in the wounded. Hydrogel is currently a very common material for wound dressings, which are themselves very hygienic gels which, as a wound dressing, possess the above mentioned characteristics and, because of their inherently transparent nature, make it easier to observe wound healing Case. However, when the wound dressing is applied to the wound for a period of time, it may stick to the skin after absorbing the tissue fluid, which may cause secondary wound damage and discomfort to the patient while being removed. In this study, we attempted to study the reversible hydrogel as a wound dressing and use its reversible properties to remove the hydrogel from the wound. Pluronic F-127 is a thermoreversible hydrogel aterial whose principle of gelation is related to its concentration and temperature. As the temperature increases, it crosslinks to form a gel and returns to solution at low temperatures Alginate is also an ionic crosslinked hydrogel material that itself has a negative charge and therefore can coat positively charged materials such as small proteins. In this study, Pluronic F-127 blended with alginate are expected to be used as smart wound dressings, making it possible to use their properties to create thermal and ionic reversible wound dressings.

中文摘要.........................................................11 Abstract..................................12 一、前言..................................................13 二、文獻回顧..............................................................15 2.1 皮膚組織介紹 ......................................................... 15 2.1.1表皮層(epidermis).......................................................15 2.1.2 真皮層(dermis)...........................................................16 2.2 傷口照護介紹 ......................................................... 18 2.2.1 傷口癒合機制...........................................................18 2.2.1.1 傷口閉合介紹.........................................................18 2.2.2 傷口自癒機制............................................................19 2.3 水凝膠介紹............................................................... 21 2.3.1水凝膠介紹..........................................................21 2.3.2 環境敏感水凝膠..........................................................24 2.4 藻酸鹽(Alginate) ............................................................. 25 2.4.1藻酸鹽介紹...............................................................25 2.4.2 藻酸鹽一般性質............................................................25 2.4.3藻酸鹽凝膠形成機制與性質...............................................27 2.4.4藻酸鹽與凝膠之生物降解性................................................31 2.4.5藻酸鹽之生物相容性.......................................................31 2.4.6藻酸鹽之藥物應用.........................................................32 2.4.7傷口敷料...............................................................33 2.5 Pluronic F-127 ......................................................... 34 2.6 Alginate- Pluronic F-127 之應用 ........................................... 36 三、研究目的...................................................................37 四、研究內容與方法............................................................38 4.1、實驗藥品 ................................................................. 38 4.2、樣品製備 ................................................................. 38 4.2.1樣品製備................................................................38 4.2.2可逆性探討................................................................38 4.2.3粒徑分析儀(HORIBA SZ-100)................................................39 4.2.4 流變儀(Anton Paar MCR-102)...............................................39 4.2.5拉曼光譜儀(JASCO NRS-5100)..........................................39 4.2.6 掃描式電子顯微鏡分析(JEOL JSM-6500F).................................40 4.2.7 VEGF 之藥物釋放.........................................................40 4.2.8 細胞毒性測試...........................................................42 4.2.9 傷口復原觀察.............................................................4 4.2.10 組織切片觀察............................................................44 五、結果與討論................................................................49 5.1 可逆性分析........................................................................ 49 5.2 液態-膠相變化的觀察 .......................................................... 51 5.3 Sol-Gel transition .......................................................... 54 5.4 成膠點分析....................................................................... 55 5.5 拉曼光譜 .................................................................... 57 5.6 掃描式電子顯微鏡 .......................................................... 60 5.7 細胞毒性 .................................................................. 62 5.8 傷口復原分析 ................................................................ 63 5.8.1 凝膠之藥物釋放......................................................63 5.8.2 傷口復原分析............................................................64 六、結論............................................................................68 七、參考文獻....................................................................69

1. Balakrishnan, B., et al., Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005. 26(32): p. 6335-42. 2. K.J. Quinn, J.M.C., J.H. Evans , J.D.S. Gaylor Principles of burn dressings Biomaterials. 6(6): p. Pages 369-377. 3. Young Seon Choi, S.R.H., Young Moo Lee,Kang Won Song, Moon Hyang Park, and Y.S. Nam3, Studies on Gelatin-Containing Artificial Skin: II. Preparation andCharacterization of Cross-Linked Gelatin-Hyaluronate Sponge. Journal of Biomedical Materials Research 1999. 48(5): p. 631-639. 4. Azad, A.K., et al., Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater, 2004. 69(2): p. 216-22. 5. Chemical and physical properties of a hydrogel wound dressing. Biomaterials, 1986. 7(1): p. 67-72. 6. Stuart, M.A., et al., Emerging applications of stimuli-responsive polymer materials. Nat Mater, 2010. 9(2): p. 101-13. 7. Nayak, S. and L.A. Lyon, Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl, 2005. 44(47): p. 7686-708. 8. Oh, J.K., et al., The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 2008. 33(4): p. 448-477. 9. Malmsten, M., Soft drug delivery systems. Soft Matter, 2006. 2(9): p. 760. 10. Jeyashree, C., et al., ARTIFICIAL SKIN: HISTORY, TYPES AND FUTURE TRENDS. Engineering and Bioscience, 2013. 1: p. 84. 11. Menon, G.K., New insights into skin structure: scratching the surface. Advanced Drug Delivery Reviews, 2002. 54: p. 3-17. 12. Menon, G.K., G.W. Cleary, and M.E. Lane, The structure and function of the stratum corneum. Int J Pharm, 2012. 435(1): p. 3-9. 13. Visscher, M. and V. Narendran, Neonatal Infant Skin: Development, Structure and Function. Newborn and Infant Nursing Reviews, 2014. 14(4): p. 135-141. 14. J.W, H., The skin: its structure and response to ionizing radiation. INT. J. RADIAT. BIOL .,, 1990. 57: p. 751-773. 15. Delgado-Gonzalo, R., et al., Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. Conf Proc IEEE Eng Med Biol Soc, 2015. 2015: p. 430-3. 16. J.TRENGOVE, N., et al., Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound repair and Regeneration, 1999. 7(6): p. 442-452. 17. Webster, J., et al., Negative pressure wound therapy for skin grafts and surgical wounds healing by primary intention. Cochrane Database Syst Rev, 2014(10): p. CD009261. 18. Armitage, J. and S. Lockwood, Skin incisions and wound closure. Surgery (Oxford), 2011.
70

29(10): p. 496-501. 19. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009. 37(5): p. 1528-42. 20. Serhan, C.N. and N. Chiang, Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: entrée for resoleomics. Rheumatic Disease Clinics of North America, 2004. 30(1): p. 69-95. 21. Broughton, G., 2nd, J.E. Janis, and C.E. Attinger, Wound healing: an overview. Plast Reconstr Surg, 2006. 117(7 Suppl): p. 1e-S-32e-S. 22. B.Witte, M. and A. Barbul, GENERAL PRINCIPLES OF WOUND HEALING. Surgical Clinics of North America, 1997. 77(3): p. 509-528. 23. KO, C., et al., In Vitro Slow Release Profile of Endothelial Cell Growth Factor Immobilized Within Calcium Alginate Microbeads. Artificial Cells, Blood Substitutes, and Biotechnology 1995. 23(2): p. 143-151. 24. Ross, R., E.W. Raines, and D.F. Bowen-Pope, The Biology of Platelet-Derived Growth Factor Cell 1986. 46(2): p. 155-169. 25. Grazul-Bilska, A.T., et al., WOUND HEALING: THE ROLE OF GROWTH FACTORS. Drugs of Today 2003: p. 787. 26. W.ThomasLawrence and R. F.Diegelmann, Growth factors in wound healing. Clinics in Dermatology, 1994. 12(1): p. 157-169. 27. Gary R. Grotendorst, et al., EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. JOURNAL OF CELLULAR PHYSIOLOGY, 1989. 139(3): p. 617-623. 28. Smola, H., G. Thiekötter, and N. Fusenig, Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. The Journal of Cell Biology, 1993. 29. Yu-Ping Xia, et al., Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. The Journal of Pathology, 1999. 188(4): p. 431-438. 30. M.D., P.A.J. and M.A.R. Ph.D, Keratinocyte Growth Factor-2 Accelerates Wound Healing in Incisional Wounds. Journal of Surgical Research, 1999. 81(2): p. 238-242. 31. C.ReganM.B., M., et al., The wound environment as a regulator of fibroblast phenotype. Journal of Surgical Research, 1991. 50(5): p. 442-448. 32. H. Paul Ehrlich PhD and T.M.K. MD, Regulation of wound healing from a connective tissue perspective. Wound repair and Regeneration, 1996. 4(2): p. 203-210. 33. Desmoulière, A., et al., Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of Cell Biology, 1993. 216(9): p. 103-111. 34. Glenn F. Pierce, et al., Role of platelet-derived growth factor in wound healing. JOURNAL OF CELLULAR CHEMISTRY, 1991. 45(4): p. 319-326.
71

35. Diegelmann, R.F., Analysis of Collagen Synthesis. Methods in Molecular Medicine, 2003. 78: p. 349-358. 36. Madden, J.S., and H. C., The rate of collagen synthesis and deposition in dehisced and resutured wounds. Surg. Gynecol.Obstet., 1970: p. 487. 37. B., M., WitteMDAdrianBarbulMD, and FACS, GENERAL PRINCIPLES OF WOUND HEALING. Surgical Clinics of North America, 1997. 77(3): p. 509-528. 38. Forrest, L., Current concepts in soft connective tissue wound healing. British Journal of Surgery, 1983. 70(3): p. 133-140. 39. Sabiston, D., Textbook of Surgery: The Biological Basis of Modern Surgical Practice. Ed. St. Louis, Mo.: Saunders,, 1997. 40. Richard, C., M. Roghani, and D. Moscatelli, Fibroblast growth factor (FGF)-2 mediates cell attachment through interactions with two FGF receptor-1 isoforms and extracellular matrix or cell-associated heparan sulfate proteoglycans. Biochem Biophys Res Commun, 2000. 276(2): p. 399-405. 41. Ahmed, E.M., et al., An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym, 2013. 91(2): p. 693-8. 42. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015. 6(2): p. 105-21. 43. Burkert, S., et al., Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Radiation Physics and Chemistry, 2007. 76(8-9): p. 1324-1328. 44. Zhao, W., et al., Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology & Biotechnology, 2013. 88(3): p. 327-339. 45. Iizawa, T., et al., Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. Journal of Applied Polymer Science, 2007. 104(2): p. 842-850. 46. L Yang, JS Chu, and J. Fix, Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. International Journal of Pharmaceutics, 2002. 235(1-2): p. 1-15. 47. Zhai, M., et al., The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiation Physics and Chemistry, 2000. 58(4): p. 397-400. 48. MC, H. and M. AG, Synthetic polymers, principles of regenerative medicine. 2011: p. 587-622. 49. You Han Bae, Teruo Okano, and S.W. Ki, A new thermo-sensitive hydrogel: Interpenetrating polymer networks from N-acryloylpyrrolidine and poly(oxyethylene). 1988, Macromolecular Rapid Communications. 9(3): p. 185-189. 50. Hua Li, Jun Chen, and K.Y. Lam, Multiphysical modeling and meshless simulation of electric-sensitive hydrogels. Polymer Physics, 2004. 42(8): p. 1514-1531. 51. Satarkar, N.S. and J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release, 2008. 130(3): p. 246-51.
72

52. Chen, S.C., et al., A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release, 2004. 96(2): p. 285-300. 53. Shin, J., P.V. Braun, and W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensors and Actuators B: Chemical, 2010. 150(1): p. 183-190. 54. Vacanti, J.P. and R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 1999. 354: p. S32-S34. 55. OlavSmidsrød, GudmundSkja˚, and k-Br˦k, Alginate as immobilization matrix for cells. Trends in Biotechnology, 1990. 8: p. 71-78. 56. Rinaudo, M., Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 2008. 57(3): p. 397-430. 57. Remminghorst, U. and B.H. Rehm, Bacterial alginates: from biosynthesis to applications. Biotechnol Lett, 2006. 28(21): p. 1701-12. 58. FG, F. and D. H., Die Polyuronsäuren der Braunalgen (Kohlenhydrate der Algen I). Biological Chemistry, 1955. 302(1-2): p. 186-203. 59. A., H., Fractionation of alginic acid. Acta Chem Scand, 1959(601-603). 60. Tonnesen, H.H. and J. Karlsen, Alginate in drug delivery systems. Drug Dev Ind Pharm, 2002. 28(6): p. 621-30. 61. Qin, Y., Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 2008. 57(2): p. 171-180. 62. Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126. 63. George, M. and T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release, 2006. 114(1): p. 1-14. 64. Hay, I.D., et al., Bacterial biosynthesis of alginates. Journal of Chemical Technology & Biotechnology, 2010. 85(6): p. 752-759. 65. Sakiyama-Elbert, S. and J. Hubbell, Functional Biomaterials: Design of Novel Biomaterials. Annual Review of Materials Research, 2001. 33: p. 183-201. 66. S, V. and E. JH, Hydrogels for musculoskeletal tissue engineering. Adv Polym Sci, 2006: p. 95-144. 67. Lee, K.Y. and S.H. Yuk, Polymeric protein delivery systems. Progress in Polymer Science, 2007. 32(7): p. 669-697. 68. Crow, B.B. and K.D. Nelson, Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers, 2006. 81(6): p. 419-27. 69. KKuo, C. and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001.
73

22(6): p. 511-521. 70. Augst, A.D., H.J. Kong, and D.J. Mooney, Alginate hydrogels as biomaterials. Macromol Biosci, 2006. 6(8): p. 623-33. 71. Drury, J.L., R.G. Dennis, and D.J. Mooney, The tensile properties of alginate hydrogels. Biomaterials, 2004. 25(16): p. 3187-99. 72. Yoshihisa Suzuki, et al., Evaluation of a novel alginate gel dressing: Cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. journal of Biomedical Materials Research, 1998. 39(2): p. 317-322. 73. Zhao, X., et al., Stress-relaxation behavior in gels with ionic and covalent crosslinks. J Appl Phys, 2010. 107(6): p. 63509. 74. Eiselt, P., K.Y. Lee, and D.J. Mooney, Rigidity of Two-Component Hydrogels Prepared from Alginate and Poly(ethylene glycol)−Diamines. Macromolecules, 1999. 32(17): p. 5561–5566. 75. Lee, K.Y., et al., Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules, 2000. 33(11): p. 4291-4294. 76. Kimberly A. Smeds and M.W. Grinstaff, Photocrosslinkable polysaccharides for in situ hydrogel formation. journal of Biomedical Materials Research, 2000. 54(1): p. 115-121. 77. Tanaka, H. and Y. Sato, Photosensitivity of polyvinylesters of substituted cinnamylideneacetic acids. polymer chemistry, 1972. 10(11): p. 3279-3287. 78. M. Z. Lu, et al., Cell encapsulation with alginate and α-phenoxycinnamylidene-acetylated poly(allylamine). Biotechnology and Bioengineering, 2000. 70(5): p. 479-483. 79. Roy, D., J.N. Cambre, and B.S. Sumerlin, Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science, 2010. 35(1-2): p. 278-301. 80. Rzaev, Z.M.O., S. Dinçer, and E. Pişkin, Functional copolymers of N-isopropylacrylamide for bioengineering applications. Progress in Polymer Science, 2007. 32(5): p. 534-595. 81. Zhao, S., et al., Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(epsilon-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res, 2010. 345(3): p. 425-31. 82. Al-Shamkhani, A. and R. Duncan, Radioiodination of Alginate via Covalently-Bound Tyrosinamide Allows Monitoring of its Fate In Vivo. Journal of Bioactive and Compatible Polymers, 1995. 10(1): p. 4-13. 83. Kong HJ, Kaigler D, and M.D. Kim K, Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules, 2004. 5(1720-1727). 84. Kong, H.J., et al., Controlling Degradation of Hydrogels via the Size of Cross-Linked Junctions. Adv Mater, 2004. 16(21): p. 1917-1921. 85. M, O., et al., Induction of cytokine production from human monocytes stimulated with alginate. J Immunother, 1991. 10(286-291). 86. G.Orive, et al., Biocompatibility of microcapsules for cell immobilization elaborated with
74

different type of alginates. Biomaterials, 2002. 23(18): p. 3825-3831. 87. Lee, J. and K.Y. Lee, Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res, 2009. 26(7): p. 1739-44. 88. Boontheekul, T., H.J. Kong, and D.J. Mooney, Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials, 2005. 26(15): p. 2455-65. 89. Maiti, S., et al., Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen. Pharm Dev Technol, 2009. 14(5): p. 461-70. 90. Wells, L.A. and H. Sheardown, Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. European Journal of Pharmaceutics and Biopharmaceutics, 2007. 65(3): p. 329-335. 91. Boateng, J.S., et al., Wound healing dressings and drug delivery systems: a review. J Pharm Sci, 2008. 97(8): p. 2892-923. 92. D, Q., et al., A dressing history. Int Wound J, 2004. 1: p. 59-77. 93. Balakrishnan, B., et al., Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2006. 27(8): p. 1355-1361. 94. Wiegand, C., T. Heinze, and U.-C. Hipler, Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair and Regeneration, 2009. 17(4): p. 511-521. 95. MS, A., Zinc in wound repair. Arch Dermatol, 1999. 135: p. 1273-1274. 96. Kabanov, A.V., E.V. Batrakova, and V.Y. Alakhov, Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release, 2002. 82(2-3): p. 189-212. 97. G. Dumortier, J., et al., Thermoreversible morphine gel. Drug Dev.Ind. Pharm., 1991. 17(9): p. 1255-1265. 98. Juhasz, J., et al., Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials, 1989. 10(4): p. 265-268. 99. Dumortier, G., et al., A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res, 2006. 23(12): p. 2709-28. 100. Gilbert, J., et al., Drug Release from Pluronic F-127 Gels. Int. J. Pharm, 1986. 32: p. 223-228. 101. Jorgensen, E., et al., Effects of salts on the micelllization and gelation of triblock copolymer studied by rheology and light scattering. Macromolecules, 1997. 30: p. 2355-2364. 102. Chen-Chow, P., Drug Release from Pluronic F-127 Gels. Diss. Abstr. Int, 1980: p. 4751. 103. Schmolka, R., Physical basis for poloxamer interactions. Ann. N. Y. Acad. Sci, 1994: p. 92-97. 104. Robert M. Nalbandian, et al., Pluronic F-127 gel preparation as an artificial skin in the
75

treatment of third-degree burns in pigs Journal of Biomedical Materials Research, 1987. 21(9): p. 1135-1148. 105. Lin, H.-R., K.C. Sung, and W.-J. Vong, In Situ Gelling of Alginate/Pluronic Solutions for OphthalmicDelivery of Pilocarpine. Biomacromolecules, 2004. 5: p. 2358-2365. 106. Das, R.K., N. Kasoju, and U. Bora, Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine, 2010. 6(1): p. 153-60. 107. Chen, C.C., et al., Transdermal delivery of selegiline from alginate-Pluronic composite thermogels. Int J Pharm, 2011. 415(1-2): p. 119-28. 108. Abrami, M., et al., Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery. Soft Matter, 2014. 10(5): p. 729-37. 109. .Nystroem, B. and B. Lindman, Dynamic and Viscoelastic Properties during the Thermal Gelation Process of a Nonionic Cellulose Ether Dissolved in Water in the Presence of Ionic Surfactants. Macromolecules, 1995. 28: p. 967-974. 110. Bohorquez, M., et al., A Study of the Temperature-Dependent Micellization of Pluronic F127. Journal of Colloid and Interface Science, 1999. 216: p. 34-40. 111. Pandit, N.K. and J. Kisaka, Loss of gelation ability of Pluronic ® F127 in the presence of some salts. International Journal of Pharmaceutics, 1996. 145: p. 129-136. 112. Kim, C.-K., et al., Trials of in situ-gelling and mucoadhesive acetaminophen liquid suppository in human subjects. International Journal of Pharmaceutics 1998. 174: p. 201-207. 113. Kim, C.-K., et al., Trials of in situ-gelling and mucoadhesive acetaminophen liquid suppository in human subjects. International Journal of Pharmaceutics, 1998. 174: p. 201-207. 114. Cheng, Y., et al., Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, 2011. 7(12): p. 5677. 115. Mattsson, B., et al., Raman scattering investigations of PEO and PPO sulphonic acids. Solid State Ionics, 1997. 97: p. 309-314. 116. Sadeghi, M., et al., Biodegradable Hydrogels Based on Alginate For Control Drug Delivery Systems. Current World Environment Journal, 2014. 9(1): p. 109-113. 117. ISO10993-5, Biological Evaluation of Medical Devices-Part 5: Tests for Cytotoxicity: In Vitro Methods, 1992. 118. Berven, L., et al., Alginates induce legumain activity in RAW 264.7 cells and accelerate autoactivation of prolegumain. Bioactive Carbohydrates and Dietary Fibre, 2013. 2(1): p. 30-44. 119. Lee, K.Y., et al., Controlled growth factor release from synthetic extracellularmatrices. nature, 2000. 408: p. 998-1000. 120. DOWNS, E.C., et al., Calcium Alginate Beads as a Slow-Release System for Delivering Angiogenic Molecules In Vivo and In Vitro. JOURNAL OF CELLULAR PHYSIOLOGY, 1992. 152: p. 422-429. 121. Peters, M.C., et al., Release from alginate enhances the biological activity of vascular
76

endothelial growth factor. Journal of Biomaterials Science, Polymer Edition, 1998. 9(12): p. 1267-1278. 122. Coviello, T., et al., Polysaccharide hydrogels for modified release formulations. J Control Release, 2007. 119(1): p. 5-24. 123. Xu, Z., et al., Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. Journal of Materials Chemistry B, 2015. 3(17): p. 3634-3642.

無法下載圖示 全文公開日期 2023/01/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE