簡易檢索 / 詳目顯示

研究生: 謝坤翰
Kun-han Hsieh
論文名稱: 電漿改質聚乳酸電紡薄膜接枝聚麩胺酸於創傷敷材之應用
Plasma modification of Poly (l-lactic acid) fibers and grafted Poly glutamic acid for wound dressing
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 蘇清淵
Ching-Iuan Su
于大光
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 左旋聚乳酸聚麩胺酸靜電紡絲電漿改質細胞相容性
外文關鍵詞: electrospinning, poly(L-lactic acid), poly(g-glutamic acid), Plasma modification, cytocompatibility
相關次數: 點閱:247下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以靜電紡絲法製備左旋聚乳酸(PLLA)電紡纖維膜,再以氧電漿改質纖維表面,接枝上3-胺丙基三乙氧基矽烷(APTES),接著將此薄膜浸於聚麩胺酸(γ-PGA)水溶液中使其表面固定一層g-PGA,使PLLA 薄膜由疏水性轉變成高親水性。透過物性分析、材料穩定性測試、生物相容性分析,評估其對於應用於傷口敷材之可行性。
    在靜電紡絲製成參數條件部分,針對PLLA濃度、工作電壓與流速進行深入探討,並統計分析其纖維直徑,結果證實靜電紡絲之高比表面積、高孔隙度特性。而經由體外細胞相容性測試,顯示g-PGA改質之PLLA無細胞毒性,且纖維母細胞在其表面的增生性高於PLLA。所以藉由g-PGA與PLLA兩種材料互相配合,可擴大聚麩胺酸在創傷敷材之應用性。


    In this study, poly(L-lactic acid) (PLLA) non-woven membrane was prepared by electrospinning technique, followed by surface modification with oxygen plasma and grafting of 3-aminopropyl triethoxysilane (APTES), then immersed in poly(g-glutamic acid) (g-PGA) solution to form on the surface a layer of g-PGA. In so doing, hydrophobic PLLA would become highly hydrophilic. Through characterization of physical properties, stability testing, and biocompatibility, the feasibility of these layered mats for wound dressing was evaluated.
    The electrospinning parameters for PLLA, including concentration, voltage, and flow rate, were investigated. Statistical analysis of the fiber diameter was performed to confirm the high specific surface area and high porosity. In vitro cytocompatibility tests show that g-PGA modified PLLA was non-cytotoxic and exhibited higher proliferation for fibroblasts than on PLLA. Thus the surface modification of g-PGA will improve the applicability of PLLA as a material for wound dressing.

    中文摘要 I 英文摘要 II 誌謝 III 表索引 VII 圖索引 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 靜電紡絲發展 3 2.1.1 靜電紡絲之歷史 3 2.1.2 靜電紡絲裝置 5 2.1.3 電紡參數之影響 6 2.1.3.1 高分子溶液特性 6 2.1.3.2 操作參數 7 2.1.3.3 環境因素 9 2.2 實驗材料介紹 10 2.2.1 左旋聚乳酸與其應用 Poly (L-lactic acid, PLLA) 10 2.2.2 聚麩胺酸與其應用 (Poly(-glutamic acid), -PGA) 12 2.3 高分子材料表面改質 14 2.4 電漿簡介 17 2.5 低溫電漿表面處理技術 18 2.6 傷口癒合 20 2.6.1 傷口癒合機制 20 2.6.2 傷口敷材 20 第三章 實驗材料與方法 22 3.1 實驗藥品 22 3.2 實驗儀器 24 3.3 實驗項目流程圖 26 3.4 實驗原理及方法 27 3.4.1 實驗原理 27 3.4.2 溶液配置 28 3.4.3 薄膜的製備 29 3.4.4 物性分析 31 3.4.4.1 表面型態觀察 31 3.4.4.2 纖維平均直徑 32 3.4.4.3 DPPH過氧化物分析 33 3.4.4.4 結構鑑定 (FTIR&XPS) 35 3.4.4.5 接觸角測試 36 3.4.4.6 膨潤度測試 37 3.4.4.7 水蒸氣穿透率 38 3.4.5 生物相容性測試 39 3.4.5.1 細胞培養 39 3.4.5.2 細胞存活率 40 3.4.5.3細胞毒性 41 3.4.5.4細胞增生 43 第四章 結果與討論 44 4.1 電紡參數差異對纖維直徑影響 44 4.2 氧電漿表面處理 50 4.3 化學分析電子譜 52 4.4 材料性質測試 55 4.4.1 接觸角 55 4.4.2 纖維膨潤度 57 4.4.3水蒸氣穿透速率測試 59 4.5 細胞實驗 61 4.5.1 細胞毒性 61 4.5.2 細胞增生 63 第五章 結論 65 第六章 參考文獻 67

    [1]J. C. Middleton and A. J. Tipton, "Synthetic biodegradable polymers as orthopedic devices," Biomaterials, vol. 21, pp. 2335-2346, 2000.
    [2]C. T. Tsao, C. H. Chang, Y. Y. Lin, M. F. Wu, J. L. Wang, T. H. Young, J. L. Han, and K. H. Hsieh, "Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials," Carbohydrate Polymers, vol. 84, pp. 812-819, 2011.
    [3]H. Yoshida, K. Klinkhammer, M. Matsusaki, M. Moller, D. Klee, and M. Akashi, "Disulfide-crosslinked electrospun poly(gamma-glutamic acid) nonwovens as reduction-responsive scaffolds," Macromol Biosci, vol. 9, pp. 568-74, Jun 11 2009.
    [4]M. Spasova, D. Paneva, N. Manolova, P. Radenkov, and I. Rashkov, "Electrospun Chitosan-Coated Fibers of Poly(L-lactide) and Poly(L-lactide)/Poly(ethylene glycol): Preparation and Characterization," Macromol Biosci, vol. 8, pp. 153-162, 2008.
    [5]W.-J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, "Electrospun nanofibrous structure: A novel scaffold for tissue engineering," Journal of Biomedical Materials Research, vol. 60, pp. 613-621, 2002.
    [6]G. Tan, L. Zhang, C. Ning, X. Liu, and J. Liao, "Preparation and characterization of APTES films on modification titanium by SAMs," Thin Solid Films, vol. 519, pp. 4997-5001, 2011.
    [7]J. Zeleny, "The Electrical Discharge from Liquid Point, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces," Physical Review, vol. 3, p. 69, 1914.
    [8]A. Formhals, "Process and apparatus for preparing artificial threads," United States Patent 1975504, 1934.
    [9]A. Formhals, "Method and appearatus for spinning," United States Patent 2160962, 1939.
    [10]G. Taylor, "Disintegration of Water Drop in an Electric Field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, pp. 383-397, July 28 1964.
    [11]G. Talyor, "The Force Exerted by an Electric Field on a Long Cylindrical Conductor," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 291, pp. 145-158, April 5 1966.
    [12]G. Taylor, "Electrically Driven Jets," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 313, pp. 453-475, December 2 1969.
    [13]H. L. Simons, "Process and apparatus for producing patterned non-woven fabrics," United States Patent 3280229, 1966.
    [14]P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of Colloid and Interface Science, vol. 36, pp. 71-79, 1971.
    [15]Jayesh Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," 1995.
    [16]L. S. Carnell, E. J. Siochi, N. M. Holloway, R. M. Stephens, C. Rhim, L. E. Niklason, and R. L. Clark, "Aligned mats from electrospun single fibers," Macromolecules, vol. 41, pp. 5345-5349, 2008.
    [17]Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites Science and Technology, vol. 63, pp. 2223-2253, 2003.
    [18]N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnol Adv, vol. 28, pp. 325-47, May-Jun 2010.
    [19]P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, "Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent," Polymer, vol. 46, pp. 4799-4810, 2005.
    [20]S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process," Polymer, vol. 46, pp. 6128-6134, 2005.
    [21]吳孟修, "海藻酸與幾丁聚醣之複合芯殼電紡纖維應用於傷口敷材," 碩士, 材料科學與工程學系, 國立臺灣科技大學, 台北市, 2012.
    [22]S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, "Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit," Polymer, vol. 46, pp. 3372-3384, 2005.
    [23]Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, "Experimental characterization of electrospinning: the electrically forced jet and instabilities," Polymer, vol. 42, pp. 09955-09967, 2001.
    [24]D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, pp. 216-223, 1996.
    [25]J.-H. He, Y.-Q. Wan, and J.-Y. Yu, "Scaling law in electrospinning: relationship between electric current and solution flow rate," Polymer, vol. 46, pp. 2799-2801, 2005.
    [26]T. J. Sill and H. A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering," Biomaterials, vol. 29, pp. 1989-2006, May 2008.
    [27]H. Zhou, T. B. Green, and Y. L. Joo, "The thermal effects on electrospinning of polylactic acid melts," Polymer, vol. 47, pp. 7497-7505, 2006.
    [28]S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, "Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution," Polymer, vol. 48, pp. 5742-5746, 2007.
    [29]T. Barrows, "Degradable implant materials: A review of synthetic absorbable polymers and their applications," Clinical Materials, vol. 1, pp. 233-257, 1986.
    [30]H. Pistner, D. R. Bendi, J. Muhling, and J. F. Reuther, "Poly (l-lactide): a long-term degradation study in vivo: Part III. Analytical characterization," Biomaterials, vol. 14, pp. 291-298, 1993.
    [31]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, vol. 43, pp. 4403-4412, 2002.
    [32]T. Miyata and T. Masuko, "Crystallization behaviour of poly(l-lactide)," Polymer, vol. 39, pp. 5515-5521, 1998.
    [33]D. K. Gilding and A. M. Reed, "Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid) homo- and copolymers: 1," Polymer, vol. 20, pp. 1459-1464, 1979.
    [34]P. Mainil-Varlet, B. Rahn, and S. Gogolewski, "Long-term in vivo degradation and bone reaction to various polylactides: 1. One-year results," Biomaterials, vol. 18, pp. 257-266, 1997.
    [35]S.-H. Hyon, K. Jamshidi, and Y. Ikada, "Synthesis of polylactides with different molecular weights," Biomaterials, vol. 18, pp. 1503-1508, 1997.
    [36]A. G. A. Coombes, D. Major, J. M. Wood, D. J. Hockley, P. D. Minor, and S. S. Davis, "Resorbable lamellar particles of polylactide as adjuvants for influenza virus vaccines," Biomaterials, vol. 19, pp. 1073-1081, 1998.
    [37]M. T. Khorasani, H. Mirzadeh, and S. Irani, "Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion," Radiation Physics and Chemistry, vol. 77, pp. 280-287, 2008.
    [38]M. Ashiuchi, T. Kamei, and H. Misono, "Poly-γ-glutamate synthetase of Bacillus subtilis," Journal of Molecular Catalysis B: Enzymatic, vol. 23, pp. 101-106, 2003.
    [39]S. Wang, X. Cao, M. Shen, R. Guo, I. Banyai, and X. Shi, "Fabrication and morphology control of electrospun poly(γ-glutamic acid) nanofibers for biomedical applications," Colloids and Surfaces B: Biointerfaces, vol. 89, pp. 254-264, 2012.
    [40]T. Sekine, T. Nakamura, Y. Shimizu, H. Ueda, K. Matsumoto, Y. Takimoto, and T. Kiyotani, "A new type of surgical adhesive made from porcine collagen and polyglutamic acid," Journal of Biomedical Materials Research, vol. 54, pp. 305-310, 2001.
    [41]Y. G. Ko, K. M. Yoon, C. Park, M. H. Sung, O. K. Kwon, C. H. Ahn, Y. J. Kim, and O. H. Kwon, "Preparation and evaluation of poly(γ-glutamic acid)-based anti-adhesion membranes," vol. 342-343, ed, 2007, pp. 225-228.
    [42]S. Yamanaka, "New gamma-polyglutamic acid, production therefore and drinking agent containing the same," JP Patent 3047087, 1991.
    [43]I.-L. Shih and Y.-T. Van, "The production of poly-(γ-glutamic acid) from microorganisms and its various applications," Bioresource Technology, vol. 79, pp. 207-225, 2001.
    [44]S. M. Gawish, A. Kantouch, A. M. E. Naggar, and S. Mosleh, "Grafting of 2-(dimethylamino) ethyl methacrylate onto gamma irradiated polypropylene fabric," Journal of Applied Polymer Science, vol. 44, pp. 1671-1677, 1992.
    [45]J. T. Guthrie and S. Kotov, "Radiation-induced graft copolymerization of methacrylic acid with polyethylene. Ion-exchange properties of the copolymeric composites," Journal of Applied Polymer Science, vol. 37, pp. 39-54, 1989.
    [46]S. Dasgupta, "Surface modification of polyolefins for hydrophilicity and bondability: Ozonization and grafting hydrophilic monomers on ozonized polyolefins," Journal of Applied Polymer Science, vol. 41, pp. 233-248, 1990.
    [47]I. Gancarz, G. Poźniak, M. Bryjak, and A. Frankiewicz, "Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid," Acta Polymerica, vol. 50, pp. 317-326, 1999.
    [48]T. Lewi and L. Irving, "A General Theory of the Plasma of an Arc," Physical Review, vol. 34, pp. 876-922, 1929.
    [49]洪翠禪, "材料表面的冷電漿聚合及表面接枝聚合水膠在生物醫學的應用," 碩士, 材料工程學系(所), 大同大學, 台北市, 2007.
    [50]F. Garbassi, M. Morra, and E. Ochiello, "Polymer surfaces–from physics to technology," Polymer International, vol. 49, pp. 135-135, 2000.
    [51]E. M. Liston, L. Martinu, and M. R. Wertheimer, "Plasma surface modification of polymers for improved adhesion: a critical review," Journal of Adhesion Science and Technology, vol. 7, pp. 1091-1127, 1993.
    [52]N. Inagaki, "Plasma surface modification and plasma polymerization," Technomic Publish Company, Inc., pp. 14-21, 1996.
    [53]Q. Chen, L. Dai, M. Gao, S. Huang, and A. Mau, "Plasma Activation of Carbon Nanotubes for Chemical Modification," The Journal of Physical Chemistry B, vol. 105, pp. 618-622, 2001/01/01 2000.
    [54]C.-C. Wang and G. H. Hsiue, "Glucose oxidase immobilization onto a plasma-induced graft copolymerized polymeric membrane modified by poly(ethylene oxide) as a spacer," Journal of Applied Polymer Science, vol. 50, pp. 1141-1149, 1993.
    [55]G. D. Winter, "Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig," Nature, vol. 193, pp. 293-294, 1962.
    [56]S.-Y. Gu, Z.-M. Wang, J. Ren, and C.-Y. Zhang, "Electrospinning of gelatin and gelatin/poly(l-lactide) blend and its characteristics for wound dressing," Materials Science and Engineering: C, vol. 29, pp. 1822-1828, 2009.
    [57]J. T. N. Carolyn G. Conant, Michael Schwartz, Cristian Ionescu-Zanetti, "Wound Healing Assays in Well Plate–Coupled Microfluidic Devices with Controlled Parallel Flow," Journal of Assocation for Laboratory Automation, vol. 15, pp. 52-57, 2010.
    [58]J. S. Choi, K. W. Leong, and H. S. Yoo, "In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF)," Biomaterials, vol. 29, pp. 587-596, 2008.
    [59]B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan, "Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin," Biomaterials, vol. 26, pp. 6335-6342, 2005.

    無法下載圖示 全文公開日期 2015/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE