簡易檢索 / 詳目顯示

研究生: 詹哲侖
Che-Lun Chan
論文名稱: 電化學阻抗頻譜法於紫膜生物光電晶片之感測應用
Application of electrochemical impedance spectroscopy in purple membrane-based photoelectric sensing chips
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 陳秀美
Hsiu-Mei Chen
戴守谷
Shou-Ku Tai
賴惠敏
Hui-Min Lai
廖國宸
Kuo-Chen Liao
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 257
中文關鍵詞: 紫膜生物光電晶片電化學阻抗頻譜法檢測極限
外文關鍵詞: purple membrane-based photoelectric sensing chips, electrochemical impedance spectroscopy, limit of detection
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bacteriorhodopsin (BR)是一種光驅動質子幫浦,受到光源刺激時會產生一系列的光循環反應,並造成PM膜內外的質子濃度梯度差。先前研究證實可將單層紫膜固定化在導電玻璃上,製作出PM生物光電感測晶片。最近研究發現PM生物光電感測晶片可用電化學阻抗頻譜法 (electrochemical impedance spectroscopy, EIS) 進行阻抗分析,發現在不同塗覆層會有阻抗值上的差異。
    本論文針對先前製作的不同PM生物光電感測晶片進行阻抗分析,檢測的目標物有菌體、DNA序列、重組蛋白與小分子化合物等。研究中也用拉曼光譜 (Raman spectroscopy) 證明上述物質確實層層塗覆在單層紫膜晶片上。
    阻抗分析結果發現,以阻抗值當檢測參數比原先以光電流值為參數的檢測方式更具便利性與較高的靈敏度。就層層塗覆的阻抗分析,當塗覆層為NHS-PEG2-NHS架橋、蛋白質和小分子化合物時,其阻抗值均會上升;然後當塗覆層為Sulfo-SIAB架橋以及DNA時,阻抗值反而會下降。
    最後使用原子力顯微鏡 (atomic force microscope, AFM) 分析來觀察DNA,並證實DNA有確實接在單層膜PM晶片上。DNA塗覆對於阻抗值降低的原因,有待未來再進一步探討。


    Bacteriorhodopsin (BR) is a protein acting as a light-driven proton pump. When illuminated, BR produces a series of photocycle reactions, resulting in a proton concentration gradient across the purple membrane (PM), where BR is located, and hence photocurrents. Previous studies demonstrated the immobilization of a PM-monolayer on a conductive glass and the application of this chip as the signal transducer of photoelectric biosensors for the detection of a variety of different targets. Recent studies revealed that these PM-based photoelectric sensing chips can also be analyzed with electrochemical impedance spectroscopy, showing the changes in impedance during their layer-by-layer coating.
    This thesis aims to comprehensively investigate the effect of material coating on the impedance of all kinds of PM-based photoelectric sensing chips. The chips are prepared with different linkers and coated with different recognition elements and targets that include bacteria, nucleic sequences, proteins, and small chemical molecules. The layer-by-layer coating of those different materials is all first confirmed with Raman spectroscopy analysis.
    The results of impedance analyses suggest that impedance values are a better detection parameter than photocurrent ones regarding sensitivity. The impedance values increase with the coating of the NHS-PEG2-NHS crosslinkers, proteins, and small chemical molecules. On the contrary, the impedance values decrease while the sulfo-SIAB crosslinkers and nucleic sequences are coated. The coating of nucleic sequences on the PM-monolayer-coated chip is confirmed with the analysis by atomic force microscopy. The cause of nucleic sequences on the reduction in impedance values needs further investigation in the future.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIX 第一章 緒論 1 第二章 文獻回顧 3 2-1 細菌視紫質 (bacteriorhodopsin, BR) 3 2-1-1 H. salinarum 3 2-1-2 BR結構 4 2-1-3 光循環路徑與質子傳遞 5 2-2 電化學阻抗頻譜法(EIS) 6 2-2-1 電化學阻抗頻譜法EIS 6 2-2-2 基於EIS之生物傳感應用 8 2-3 不同電化學檢測法檢測不同目標物之比較 14 第三章 實驗 15 3-1 實驗目的 15 3-2 實驗流程圖 17 3-3 實驗藥品 30 3-4 實驗設備 32 3-5 量測 33 3-5-1 光電流量測 33 3-5-2 電化學阻抗頻譜法量測 34 3-5-2-1 基本介紹 34 3-5-2-2 實驗步驟 35 3-5-3 拉曼光譜儀量測 36 3-5-4 原子力顯微鏡分析 37 第四章 結果與討論 38 4-1 以光電流值量測不同PM複合晶片 38 4-1-1 chitin aptamer-PM複合晶片 39 4-1-2 LTA antibody-PM複合晶片 41 4-1-3 LPS antibody-PM複合晶片 44 4-1-4 Amp aptamer-PM複合晶片 48 4-1-5 Kan aptamer-PM複合晶片 50 4-1-6 miR17 probe-PM複合晶片 52 4-1-7 SAA1 antibody-PM複合晶片 55 4-1-8 ATP atamer-PM複合晶片 59 4-2 以EIS 電化學阻抗頻譜法量測不同種PM複合晶片 61 4-2-1 以Rct值來探討不同塗覆層之阻抗變化 61 4-2-1-1 chitin aptamer-PM複合晶片 61 4-2-1-2 LTA antibody-PM複合晶片 64 4-2-1-3 LPS antibody-PM複合晶片 68 4-2-1-4 Amp aptamer-PM複合晶片 73 4-2-1-4-1 不同濃度ampicillin之阻抗值(Ω)變化 73 4-2-1-4-2 不同濃度Amp aptamer之阻抗值(Ω)變化 76 4-2-1-4-3 不同濃度Amp oligo-AuNPs之阻抗值(Ω)變化 78 4-2-1-5 Kan aptamer-PM複合晶片 81 4-2-1-6 miR17 probe-PM複合晶片 84 4-2-1-7 SAA1 antibody-PM複合晶片 88 4-2-1-8 ATP aptamer-PM複合晶片 93 4-2-1-9 不同層層塗覆對Rct差值百分比的影響 96 4-2-1-10 不同塗覆層之阻抗統整 97 4-2-2 以∆Rct檢量線探討最低檢測極限濃度 97 4-2-2-1 chitin aptamer-PM複合晶片 97 4-2-2-2 LTA antibody-PM複合晶片 99 4-2-2-3 LPS antibody-PM複合晶片 103 4-2-2-4 Amp aptamer-PM複合晶片 109 4-2-2-5 Kan aptamer-PM複合晶片 111 4-2-2-6 miR17 probe-PM複合晶片 113 4-2-2-7 SAA1 antibody-PM複合晶片 117 4-2-2-8 ATP aptamer-PM複合晶片 123 4-2-2-9 八種PM複合晶片之整理 125 4-3 以拉曼光譜儀量測並分析不同PM複合晶片 128 4-3-1 chitin aptamer-PM複合晶片 128 4-3-2 LTA antibody-PM複合晶片 137 4-3-3 LPS antibody-PM複合晶片 151 4-3-4 Amp aptamer-PM複合晶片 165 4-3-5 Kan aptamer-PM複合晶片 175 4-3-6 miR17 probe-PM複合晶片 185 4-3-7 SAA1 antibody-PM複合晶片 196 4-4 以原子力顯微鏡量測並分析Amp aptamer-PM複合晶片 209 4-4-1 mica-PM晶片之AFM影像 210 4-4-2 碘基化Amp aptamer層的mica晶片之AFM影像 212 4-4-3 Amp oligo-AuNPs層的mica晶片之AFM影像 219 4-4-4 ampicillin層的mica晶片之AFM影像 223 第五章 結論 227 第六章 參考文獻 229

    Abdalhai, M. H.; Fernandes, A. M.; Xia, X.; Musa, A.; Ji, J.; Sun, X., Electrochemical genosensor to detect pathogenic bacteria (escherichia coli o157:H7) as applied in real food samples (fresh beef) to improve food safety and quality control. Journal of Agricultural and Food Chemistry 2015, 63, 5017-5025.

    Ariffin, E. Y.; Lee, Y. H.; Futra, D.; Tan, L. L.; Karim, N. H. A.; Ibrahim, N. N. N.; Ahmad, A., An ultrasensitive hollow-silica-based biosensor for pathogenic escherichia coli DNA detection. Analytical and Bioanalytical Chemistry 2018, 410, 2363-2375.

    Athamneh, A. I. M.; Alajlouni, R. A.; Wallace, R. S.; Seleem, M. N.; Senger, R. S., Phenotypic profiling of antibiotic response signatures in escherichia coli using raman spectroscopy. Antimicrobial Agents and Chemotherapy 2014, 58, 1302-1314.

    Bahadır, E. B.; Sezgintürk, M. K., A review on impedimetric biosensors. Artificial Cells, Nanomedicine, and Biotechnology 2016, 44, 248-262.

    Braiman, M.; Mathies, R., Resonance raman spectra of bacteriorhodopsin's primary photoproduct: Evidence for a distorted 13-cis retinal chromophore. Proceedings of the National Academy of Sciences of the United States of America 1982, 79, 403-407.

    Carminati, M.; Ferrari, G.; Bianchi, D.; Sampietro, M., Impedance spectroscopy for biosensing: Circuits and applications. In Handbook of biochips: Integrated circuits and systems for biology and medicine, Sawan, M., Ed. Springer New York: New York, NY, 2022; pp 87-110.

    Chen, H.-M.; Jheng, K.-R.; Yu, A.-D., Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors and Bioelectronics 2017, 91, 24-31.

    Ettah, I.; Ashton, L., Engaging with raman spectroscopy to investigate antibody aggregation. Antibodies 2018, 7, 24.

    Gaus, K.; Rösch, P.; Petry, R.; Peschke, K.-D.; Ronneberger, O.; Burkhardt, H.; Baumann, K.; Popp, J., Classification of lactic acid bacteria with uv-resonance raman spectroscopy. Biopolymers 2006, 82, 286-290.

    Ghanbari, K.; Roushani, M., A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic. Bioelectrochemistry 2018, 120, 43-48.

    Gui, G.-F.; Zhuo, Y.; Chai, Y.-Q.; Xiang, Y.; Yuan, R., A novel ecl biosensor for β-lactamase detection: Using ru(ii) linked-ampicillin complex as the recognition element. Biosensors and Bioelectronics 2015, 70, 221-225.

    Hampp, N., Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews 2000, 100, 1755-1776.

    Honzatko, R. B.; Williams, R. W., Raman spectroscopy of avidin: Secondary structure, disulfide conformation, and the environment of tyrosine. Biochemistry 1982, 21, 6201-6205.

    Ito, T.; Hosokawa, K.; Maeda, M., Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosensors and Bioelectronics 2007, 22, 1816-1819.

    Jarvis, R. M.; Brooker, A.; Goodacre, R., Surface-enhanced raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a raman spectroscopy interface. Analytical Chemistry 2004, 76, 5198-5202.

    Jess, P. R. T.; Garcés-Chávez, V.; Smith, D.; Mazilu, M.; Paterson, L.; Riches, A.; Herrington, C. S.; Sibbett, W.; Dholakia, K., Dual beam fibre trap for raman microspectroscopy of single cells. Optics Express 2006, 14, 5779-5791.

    Kahraman, M.; Zamaleeva, A. I.; Fakhrullin, R. F.; Culha, M., Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced raman scattering. Analytical and Bioanalytical Chemistry 2009, 395, 2559-2567.

    Kashish; Bansal, S.; Jyoti, A.; Mahato, K.; Chandra, P.; Prakash, R., Highly sensitive in vitro biosensor for enterotoxigenic escherichia coli detection based on ssdna anchored on ptnps-chitosan nanocomposite. Electroanalysis 2017, 29, 2665-2671.

    Katz, E.; Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 2003, 15, 913-947.

    Li, Y.-T.; Tian, Y.; Tian, H.; Tu, T.; Gou, G.-Y.; Wang, Q.; Qiao, Y.-C.; Yang, Y.; Ren, T.-L., A review on bacteriorhodopsin-based bioelectronic devices. Sensors 2018, 18, 1368.

    Lin, J.; Li, X.-R.; Zhao, L.-Y.; Li, G.-P.; Shen, H.-Y.; Li, Y.-T.; Ren, T.-L., Review on bacteriorhodopsin-based self-powered bio-photoelectric sensors. Materials Science in Semiconductor Processing 2023, 162, 107501.

    Lin, Y.-C.; Lin, C.-Y.; Chen, H.-M.; Kuo, L.-P.; Hsieh, C.-E.; Wang, X.-H.; Cheng, C.-W.; Wu, C.-Y.; Chen, Y.-S., Direct and label-free determination of human glycated hemoglobin levels using bacteriorhodopsin as the biosensor transducer. Sensors 2020, 20, 7274.

    Lisdat, F.; Schäfer, D., The use of electrochemical impedance spectroscopy for biosensing. Analytical and Bioanalytical Chemistry 2008, 391, 1555-1567.

    Liu, R.; Yang, Z.; Guo, Q.; Zhao, J.; Ma, J.; Kang, Q.; Tang, Y.; Xue, Y.; Lou, X.; He, M., Signaling-probe displacement electrochemical aptamer-based sensor (sd-eab) for detection of nanomolar kanamycin a. Electrochimica Acta 2015, 182, 516-523.

    Liu, X.; Hu, M.; Wang, M.; Song, Y.; Zhou, N.; He, L.; Zhang, Z., Novel nanoarchitecture of co-mof-on-tpn-cof hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosensors and Bioelectronics 2019, 123, 59-68.

    Lu, Q.; Liu, X.; Hou, J.; Yuan, Q.; Li, Y.; Chen, S., Selection of aptamers specific for dehp based on ssdna library immobilized selex and development of electrochemical impedance spectroscopy aptasensor. Molecules 2020, 25, 747.

    Magar, H. S.; Hassan, R. Y. A.; Mulchandani, A., Electrochemical impedance spectroscopy (eis): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578.

    Naja, G.; Bouvrette, P.; Hrapovic, S.; Luong, J. H., Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007, 132, 679-686.

    Nguyen, A. H.; Ma, X.; Park, H. G.; Sim, S. J., Low-blinking sers substrate for switchable detection of kanamycin. Sensors and Actuators B: Chemical 2019, 282, 765-773.

    Prodromidis, M. I., Impedimetric immunosensors—a review. Electrochimica Acta 2010, 55, 4227-4233.

    Rakovich, A.; Donegan, J. F.; Oleinikov, V.; Molinari, M.; Sukhanova, A.; Nabiev, I.; Rakovich, Y. P., Linear and nonlinear optical effects induced by energy transfer from semiconductor nanoparticles to photosynthetic biological systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2014, 20, 17-32.

    Rezaei, B.; Khayamian, T.; Majidi, N.; Rahmani, H., Immobilization of specific monoclonal antibody on au nanoparticles for hgh detection by electrochemical impedance spectroscopy. Biosensors and Bioelectronics 2009, 25, 395-399.

    Rosch, P.; Harz, M.; Schmitt, M.; Peschke, K. D.; Ronneberger, O.; Burkhardt, H.; Motzkus, H. W.; Lankers, M.; Hofer, S.; Thiele, H.; Popp, J., Chemotaxonomic identification of single bacteria by micro-raman spectroscopy: Application to clean-room-relevant biological contaminations. Appl Environ Microbiol 2005, 71, 1626-1637.

    Singh, P.; Singh, S.; Jaggi, N.; Kim, K.-H.; Devi, P., Recent advances in bacteriorhodopsin-based energy harvesters and sensing devices. Nano Energy 2021, 79, 105482.

    Sobotta, C.; Braun, M.; Tittor, J.; Oesterhelt, D.; Zinth, W., Influence of the charge at d85 on the initial steps in the photocycle of bacteriorhodopsin. Biophysical Journal 2009, 97, 267-276.

    Srinivasan, S.; Patke, S.; Wang, Y.; Ye, Z.; Litt, J.; Srivastava, S. K.; Lopez, M. M.; Kurouski, D.; Lednev, I. K.; Kane, R. S.; Colón, W., Pathogenic serum amyloid a 1.1 shows a long oligomer-rich fibrillation lag phase contrary to the highly amyloidogenic non-pathogenic saa2.2*. Journal of Biological Chemistry 2013, 288, 2744-2755.

    Sun, X.; Li, F.; Shen, G.; Huang, J.; Wang, X., Aptasensor based on the synergistic contributions of chitosan–gold nanoparticles, graphene–gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 2014, 139, 299-308.

    Sundaram, J.; Park, B.; Kwon, Y.; Lawrence, K. C., Surface enhanced raman scattering (sers) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. International Journal of Food Microbiology 2013, 167, 67-73.

    Verchère, A.; Ou, W.-L.; Ploier, B.; Morizumi, T.; Goren, M. A.; Bütikofer, P.; Ernst, O. P.; Khelashvili, G.; Menon, A. K., Light-independent phospholipid scramblase activity of bacteriorhodopsin from halobacterium salinarum. Scientific Reports 2017, 7, 9522.

    Wang, X.; Dong, S.; Gai, P.; Duan, R.; Li, F., Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosensors and Bioelectronics 2016, 82, 49-54.

    Wang, Y.; Irudayaraj, J., A sers dnazyme biosensor for lead ion detection. Chemical Communications 2011, 47, 4394-4396.

    Wen, Z. Q., Raman spectroscopy of protein pharmaceuticals. Journal of Pharmaceutical Sciences 2007, 96, 2861-2878.

    Wolff, E. K.; Bogomolni, R. A.; Scherrer, P.; Hess, B.; Stoeckenius, W., Color discrimination in halobacteria: Spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proceedings of the National Academy of Sciences of the United States of America 1986, 83, 7272-7276.

    Wu, H.-H.; Liao, X.-Q.; Wu, X.-Y.; Lin, C.-D.; Jheng, K.-R.; Chen, H.-R.; Wang, Y.-Y.; Chen, H.-M., Versatile protein-a coated photoelectric immunosensors with a purple-membrane monolayer transducer fabricated by affinity-immobilization on a graphene-oxide complexed linker and by shear flow. Sensors 2018, 18, 4493.

    Xu, M.; Luo, X.; Davis, J. J., The label free picomolar detection of insulin in blood serum. Biosensors and Bioelectronics 2013, 39, 21-25.

    Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V., Raman scattering studies on peg functionalized hydroxyapatite nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 117, 299-303.

    Yu, Z.-g.; Lai, R. Y., A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 2018, 176, 619-624.

    Yuhana Ariffin, E.; Heng, L. Y.; Tan, L. L.; Abd Karim, N. H.; Hasbullah, S. A., A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of e. Coli. Sensors 2020, 20, 1279.

    Zhu, Y.; Chandra, P.; Song, K.-M.; Ban, C.; Shim, Y.-B., Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosensors and Bioelectronics 2012, 36, 29-34.

    王翔禾,紫膜生物光電晶片之DNA檢測條件再適化與Micro-DNA之初步檢測,國立臺灣科技大學化學工程研究所碩士論文,2019

    王詠毅,紫膜生物光電晶片之類風濕性關節炎檢測應用與原子力顯微鏡分析,國立臺灣科技大學化學工程研究所碩士論文,2018

    洪子程,開發氨苄青黴素和卡納黴素之紫膜生物光電感測晶片,國立臺灣科技大學化學工程研究所碩士論文,2020

    陳泓任,檢測三磷酸線苷、革藍氏陽性菌和白血球之紫膜生物光電晶片開發,國
    立臺灣科技大學化學工程研究所碩士論文,2018

    曾聖翔,紫膜複合生物光電晶片應用於腦癌血清miRNA與免疫檢測之探討,國
    立臺灣科技大學化學工程研究所碩士論文,2021

    黎閔哲,即時檢測抗體及核酸適體於紫膜生物光電晶片上之固定化穩定性及開發大腸桿菌檢測晶片,國立臺灣科技大學化學工程研究所碩士論文,2018

    鄭存孝,紫膜生物光電晶片檢測寡核苷酸與即時監測基因合成之應用,國立臺灣科技大學化學工程研究所碩士論文,2017

    鄭智文,以紫膜生物光電晶片檢測遷離子及糖化血紅素,國立臺灣科技大學化
    學工程研究所碩士論文,2018

    鄭凱如,新型紫膜複合材料與晶片之光電與光學特性研究暨應用,國立臺灣科技大學化學工程研究所博士論文,2018

    賴銀德,檢測真菌、革蘭氏陽性與陰性菌之紫膜生物光電晶片開發,國立臺灣科
    技大學化學工程研究所碩士論文,2019

    謝承恩,糖尿病與類風濕性關節炎病患之紫膜生物光電晶片檢測分析,國立臺灣科技大學化學工程研究所碩士論文,2019

    蕭奕岷,細菌視紫單層塗覆光電感測晶片的光控制自旋過濾特性探討,國立臺灣科技大學化學工程研究所碩士論文,2022

    無法下載圖示 全文公開日期 2033/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE