簡易檢索 / 詳目顯示

研究生: 李建德
Chien-Te Lee
論文名稱: 模糊多階多目標生產規劃模式之研究-以國內某網路設備供應鏈為例
Fuzzy multi-level multi-objective production planning models-an example of a domestic network equipment manufacturing supply chain
指導教授: 葉瑞徽
Ruey Huei Yeh
邱煥能
Huan-Neng Chiu
口試委員: 王孔政
Kung-Jeng Wang
周文賢
wnsnchou
陳建良
james
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 多階多目標生產規劃模糊數學規劃供應鏈互動式求解程序
外文關鍵詞: multi-level multi-objective production planning, fuzzy mathematical programming, supply chain, interactive solution procedure
相關次數: 點閱:284下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於全球高度競爭,企業為了滿足客戶需求,採用以時間為基礎的競爭策略,以加速完成生產計劃,除此之外,減少存貨及維持適當的存貨水準,以獲取較佳的企業績效及顧客滿意。
生產規劃的功能是以加班、存貨、外包及欠撥或改變人力水準方式,正確地處理需求變動,以符合顧客的需求。一個整體生產計劃需統合銷售訂單和生產批量並同時完成多項企業目標,例如:總成本最小、利潤最大及人力水準變動最小等目標。
本論文在模糊環境下,建構一個新的模糊多階多目標生產規劃模式於供應鏈中,此多階供應鏈包括一個批發商,一個製造商(供應鏈的核心成員)及一個供應商,而每一個成員都有資源限制(例如:人力、產能及/或倉儲空間)。
本論文發展一個有效率兩階段互動式求解程序及一個兩階段探索式求解程序,以最大化供應鏈總利潤及整體滿意度,本論文提出的求解程序修正自Sakawa et al.的互動式模糊規劃法且能容易地被業界所採用,而Sakawa et al.的方法僅運用在製造商單階及單目標。最後,以台灣知名網路產品製造供應鏈個案研究來驗證本論文模式及求解程序的效率性及易使用性。
研究結果顯示,在供應鏈中,上下游成員間的互動及調整過程是必要的,此過程將能最大化供應鏈總利潤及整體滿意度。供應鏈成員緊密的整合將互相得利並創造全球競爭優勢。
未來研究主題將包括樹狀(arborescent)供應鏈的建模,發展新的求解程序及考慮模糊參數等方向。


Due to the intense global competition, businesses generally adopt a time-based competition strategy to speed a fulfillment plan in order to meet customer demands. In addition, the inventory should be reduced and maintained at a proper stock level for the purposes of better business performance and customer satisfaction.
The function of production planning is to deal properly with demand fluctuations by using overtime, inventory, subcontracting, and backordering, or changing the workforce level to meet the customers’ needs. An aggregate plan aligns the production runs with the sales orders and simultaneously achieves multiple business objectives such as minimizing the total cost, maximizing the profit, minimizing the change in workforce level, and so on.
This thesis formulates a novel fuzzy multi-level multi-objective production planning (FMLMOPP) model for a supply chain under a fuzzy environment. The multi-level (e.g., three-level) supply chain consists of a wholesaler, a manufacturer (the core member of the supply chain), and a supplier, as well as limited resources (i.e., workforce, capacity, and/or storage space) of each member.
An efficient two-phase interactive solution procedure and an exploratory solution procedure are developed to obtain a good solution that maximizes the total supply chain profit and the satisfactory degree. The proposed solution procedure, modified from Sakawa et al.’s interactive fuzzy programming approach, can be easily adopted by practitioners. Through a negotiation case study, a well-known network product manufacturing supply chain in Taiwan is presented to demonstrate the effectiveness and aptness of the proposed model and the solution procedure, as compared with Sakawa et al.’s method with only one objective at the manufacturer level.
The results indicate that the interactive and adjusted process between upstream and downstream members in a supply chain is necessary. This can maximize the total supply chain profit and the satisfactory degree. It is extremely important for all members in the supply chain to closely integrate together in order to gain mutual benefits and create their global competitive advantages.
Future research topics might include model formulation of arborescent supply chains, development of new solution procedures, and consideration of fuzzy parameters.

目錄 中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 Ⅷ 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與架構 1 1.3 研究範圍與限制 2 第二章 相關文獻探討 5 2.1 多階多目標生產規劃問題文獻探討 5 2.2 多階多目標生產規劃求解方法文獻探討 5 2.2.1 數學規劃法文獻探討 5 2.2.2 探索式解法文獻探討 8 2.3 模糊理論 14 第三章 模糊多階多目標生產規劃數學規劃模式 18 3.1 符號定義與基本假設 18 3.1.1 符號定義 18 3.1.2 基本假設 21 3.2 數學規劃模式之建構 22 3.3 互動式求解程序之發展 25 3.4 多階供應鏈生產規劃協商個案研究 28 3.4.1 產業鏈及協商過程 28 3.4.2 個案研究成果及建議 33 3.5 章結論 41 第四章 模糊多階多目標生產規劃探索式求解程序 43 4.1 探索式求解程序 43 4.2 個案研究成果及建議 47 4.3 章結論 56 第五章 綜合結論與建議 57 5.1 綜合結論 57 5.2 未來研究方向與建議 59 參考文獻 60 作者簡介 68

參考文獻
1. Aliev, R. A., Fazlollahi, B., Guirimov, B.G., and Aliev, R. R. Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management. Information Sciences, 2007, 177, 4241-4255.
2. Altiparmak, F., Gen, M., Lin, L., and Paksoy, T. A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 2006, 51, 196-215.
3. Baykasoglu, A. and Gocken, T. Multi-objective aggregate production planning with fuzzy parameters. Advances in Engineering Software, 2010, 41, 1124-1131.
4. Bellman, R. E. and Zadeh, L. A. Decision making in a fuzzy environment. Management Science, 1970, 17, 141-164.
5. Bergstrom, G. L. and Smith, B. E. Multi-item production planning: An extension of the HMMS rules. Management Science, 1970, 16, 614-629.
6. Bowman, H. Production scheduling by the transportation method of linear programming. Operations Research, 1956, 4, 100-103.
7. Buxey, G. Strategy not tactics drives aggregate planning. International Journal of Production Economics, 2003, 85, 331-346.
8. Chan, F. T. S., Chung, S. H. and Wadhwa, S. A hybrid genetic algorithm for production and distribution. Omega, 2005, 33, 345-355.
9. Chinchuluun, A. and Pardalos, P. M. A survey of recent development in multiobjective optimization. Annals of Operations Research, 2007, 154, 29-50.
10. Chiu, H. N., Lee, Y. S., and Tseng, G. Y. Distribution lot-sizing models for arborescent supply chains with discrete-period variable demand. Production Planning and Control, 2003, 14, 634-646.
11. Cohen, M. A. and Lee, H. L. Strategic analysis of integrated production-distribution systems: models and methods. Operations Research Society of America, 1988, 36, 216-228.
12. Das, B. P., Rickard, J. G., Shah, N., and Macchietto, S. An investigation on integration of aggregate production planning, master production scheduling and short-term production scheduling of batch process operations through a common data model. Computers and Chemical Engineering, 2000, 24, 1625-1631.
13. Dubois, D. and Prade, H. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.
14. Elahipanah, M. and Farahani, R.Z. A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. International Journal of Production Economics, 2008, 111, 229-243.
15. Ertugrul, I. and Tus, A. Interactive fuzzy linear programming and an application sample at a textile firm. Fuzzy Optim Decis Making, 2007, 6, 29–49.
16. Fahimnia, B., Farahani, R. Z., Marian, R. and Luong, L. A review and critique on integrated production-distribution planning models and techniques. Journal of Manufacturing Systems, 2012, http://dx.doi.org/10.1016/j.jmsy.2012.07.005.
17. Fahimnia, B., Luong, L. and Marian, R., Genetic algorithm optimization of an integrated aggregate production-distribution plan. International Journal of Production Research, 1-16, in press.
18. Ganesh, K. and Punniyamoorthy, M. Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing. The International Journal of Advanced Manufacturing Technology, 2005, 26, 148-154.
19. Gen, M. and Syarif, A. Hybrid genetic algorithm for multi-time period production/distribution planning. Computers & Industrial Engineering, 2005, 48, 799-809.
20. Goldberg, D.E. Genetic algorithms in search, optimization and machine learning, Reading, MA: Addison Wesley, 1989.
21. Gray, P. Exact solution of the fixed-charge transportation problem. Operations Research, 1971, 19, 1529-1538.
22. Haan, J. D., Masaru Y., and Gerben L. Production planning in Japan: rediscovering lost experiences or new insights. International Journal of Production Economics. 2001, 71, 101-109.
23. Hansmann, F. and Hess, S. W. A linear programming approach to production and employment scheduling. Management Technology. 1960, 1, 46-51.
24. Holland, J. H. Adaptation in natural and artificial systems, Ann Arbor, MI: The University of Michigan Press, 1975.
25. Holt, C. C., Modigliani, F., and Simon, H. A. A linear decision rule for production and employment scheduling. Management Science. 1955, 2, 1-30.
26. Homburg, C. Production planning with multiple objectives in decentralized organizations. International journal of production economics. 1998, 56-57, 243-252.
27. Jamalnia, A. and Soukhakian, M. A. A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Computers & Industrial Engineering, 2009, 56, 1474-1486.
28. Jodlbauer, H. Customer driven production planning. International Journal of Production Economics, 2008, 111, 793-801.
29. Jones, C. H. Parametric production planning. Management Science, 1967, 13, 843-867.
30. Kazemi, A., Fazel Zarandi, M. and Moattar Husseimi, S. A multi-agent system to solve the production-distribution planning problem for a supply chain: a genetic algorithm approach. The International Journal of Advanced Manufacturing Technology, 2009, 44, 180-193.
31. Lee, S. M. and Moore, L. J. A practical approach to production scheduling. Production and Inventory Management, 1974, 15, 79-92.
32. Lee, Y. Y. Fuzzy set theory approach to aggregate production planning and inventory control. Thesis (PhD). Kansas State University, 1990.

33. Liang, T. F. Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains. Information Sciences, 2011, 181, 842-854.
34. Liang, T. F. Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Computers & Industrial Engineering, 2008, 55, 676-694.
35. Luhandjula, M. K. Fuzzy stochastic linear programming: Survey and future research directions. European Journal of Operational Research, 2006, 174, 1353-1367.
36. Masud, S. M. and Hwang, C. L. An aggregate production planning model and application of three multiple objective decision methods. International Journal of Production Research, 1980, 18, 741-752.
37. Mellichamp, J. M. and Love, R. M. Production switching heuristics for the aggregate planning problem. Management Science, 1978, 24, 1242-1251.
38. Mishra, S. and Ghosh, A. Interactive fuzzy programming approach to bi-level quadratic fractional programming problems. Annals of Operations Research, 2006, 143, 251-263.
39. Mula,J., Peidro, D., and Poler, R. The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 2010, 128, 136-143.
40. Nagarajan, R., and Yaacob, S. Fuzzy linear programming with vague objective coefficients in an uncertain environment. Journal of the Operational Research Society, 2005, 56, 597–603.
41. Nam, S. J. and Logendran, R. Aggregate production planning: A survey of models and methodologies. European Journal of Operational Research, 1992, 61, 255-272.
42. Nishizaki, I. and Sakawa, M. Stackelberg solutions to multi-objective two-level linear programming problems. Journal of Optimization Theory and Applications, 1999, 103, 161-182.
43. Ozdamar, L. and Yazgac, T. A hierarchical planning approach for a production-distribution system. International Journal of Production Research, 1999, 37, 3759.
44. Peidro, D., Mula, J., Poler, R., and Verdegay, J. L. Fuzzy optimization for supply chain planning under supply demand and process uncertainties. Fuzzy Sets and Systems, 2009, 160, 2640-2657.
45. Pradenas, L. and Penailillo, F. Aggregate production planning problem: A new algorithm. Electronic Notes in Discrete Mathematics, 2004, 18, 193-199.
46. Pyke, D. F. and Cohen, M. A. Multiproduct integrated production-distribution systems. European Journal of Operational Research, 1994, 74, 18-49.
47. Pyke, D. F. and Cohen, M. A. Performance characteristics of stochastic integrated production-distribution systems. European Journal of Operational Research, 1993, 68, 23-48.
48. Saad, G. An overview of production planning model: Structure classification and empirical assessment. International Journal of Production Research, 1982, 20, 105-114.
49. Sakawa, M. and Kato, K. An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems using chance constrained conditions. Journal of Multi-Criteria Decision Analysis, 2002, 11, 125-137.
50. Sakawa, M. and Nishizaki, I. Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithm. Fuzzy Sets and Systems, 2002, 127, 185-197.
51. Sakawa, M., Nishizaki, I., and Uemura, Y. Interactive fuzzy programming for multilevel linear programming problems. Computers & Mathematics with Applications, 1998, 36, 71-86.
52. Sakawa, M., Nishizaki, I., and Uemura, Y. Interactive fuzzy programming for multi-level linear fractional programming problems with fuzzy parameters. Fuzzy Sets and Systems, 2000, 115, 93-103.
53. Selim, H., Araz, C., and Ozkarahan, I. Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E, 2008, 44, 396-419.
54. Shih, H. S., Lai, Y. J., and Lee, E. S. Fuzzy approach for multi-level programming problems. Computers & Operations Research, 1996, 23, 73-91.
55. Syarif, A., Yun, Y. and Gen, M. Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach. Computers & Industrial Engineering, 2002, 43, 299-314.
56. Tadei, R., Trubian, M., Avendano, J. L., Della, C. F., and Menga, G. Aggregate planning and scheduling in the food industry: A case study. European Journal of Operational Research, 1995, 87, 564-573.
57. Tang, J., Fung, R. Y. K., and Yung, K. L. Fuzzy modeling and simulation for aggregate production planning. International Journal of Systems Science, 2003, 34, 661-673.
58. Tang, J., Wang, D., and Fung, R. Y. K. Fuzzy formulation for multi-product aggregate production planning. Production Planning & Control, 2000, 11, 670-676.
59. Tang, O. and Grubbström R. W. Planning and replanning the master production schedule under demand uncertainty. International Journal of Production Economics, 2002, 78, 323-334.
60. Taubert, W. H. A search decision rule for the aggregate scheduling problem. Management Science, 1968, 14, B343-B359.
61. Ulungu, E. L. and Teghem, J. Multi-objective combinatorial optimization problems: A survey. Journal of Multi-Criteria Decision Analysis, 1994, 3, 83-104.
62. Vasant, P. M. Fuzzy production planning and its application to decision making. Journal of Intelligent Manufacturing, 2006, 17, 5-12.
63. Vasant, P. Wu, D. and Ierapetritou, M. Hierarchical approach for production planning and scheduling under uncertainty. Chemical Engineering and Processing, 2007, 46, 1129-1140.
64. Voros, J. On the risk-based aggregate planning for seasonal products. International Journal of Production Economics, 1999, 59, 195-201.
65. Wagner, H. M. and Whitin, T. M. Dynamic version of the economic lot size model. Management Science, 1958, 5, 89-96.
66. Wang, R. C. and Fang, H. H. Aggregate production planning with multiple objectives in a fuzzy environment. European Journal of Operational Research, 2001, 133, 521-536.
67. Wang, R. C. and Liang, T. F. Aggregate production planning with multiple fuzzy goals. International Journal of Advanced Manufacturing Technology, 2004, 25, 589-597.
68. Wang, R. C. and Liang, T. F. Application of fuzzy multi-objective linear programming to aggregate production planning. Computers & Industrial Engineering, 2004, 24, 17-41.
69. Wang, R. C. and Liang, T. F. Applying possibilistic linear programming to aggregate production planning. International Journal of Production Economics, 2005, 98, 328-341.
70. Wu, D. and Ierapetritou, M. Hierarchical approach for production planning and scheduling under uncertainty. Chemical Engineering and Processing, 2007, 46, 1129-1140.
71. Yeh, W-C. A hybrid heuristic algorithm for the multi-stage supply chain network problem. The International Journal of Advanced Manufacturing Technology, 2005, 26, 675-685.
72. Yeh, W-C. A efficient memetic algorithm for the multi-stage supply chain network problem. The International Journal of Advanced Manufacturing Technology, 2006, 29, 803-813.
73. Yilmaz, P. and Catay, B. Strategic level three-stage production distribution planning with capacity expansion. Computers & Industrial Engineering, 2006, 51, 609-620.
74. Yimer, A. D. and Demirli, K. A. A genetic approach to two-phase optimization of dynamic supply chain scheduling. Computers & Industrial Engineering, 2010, 58, 411-422.
75. Zadeh, L.A., Fuzzy sets. Information and Control 8(2), 1965, 338-353.
76. Zimmermann, H. -J. Description and optimization of fuzzy systems. International Journal of General Systems, 1976, 2, 209-215.
77. Zimmermann, H. -J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1978, 1, 45-55.
78. Zimmermann, H. -J. Applications of fuzzy set theory to mathematical programming. Information Sciences, 1985, 36, 29-58.

QR CODE