簡易檢索 / 詳目顯示

研究生: 涂照偉
Chao-Wei Tu
論文名稱: 矽奈米結構在場發射元件及太陽能電池之研究
The Study of Silicon Nanostructures for field emission and solar cell devices
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 許正良
Cheng-Liang Hsu
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 165
中文關鍵詞: 奈米孔洞太陽能電池PSG摻雜氫電漿處理矽奈米結構石墨烯矽奈米線場發射
外文關鍵詞: Silicon nanowire field-emission, silicon nanostructure, phosphorus silicate glass doped, nanoholes silicon solar cell
相關次數: 點閱:375下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討分為兩部分,第一部利用phosphorus silicate glass (PSG) 擴散製作場發射元件讓表面形成n型半導體降功函數,進而提升p型奈米線線起始電場至3.28 V/μm但其穩定度不佳。氫電漿處理雖然可以去除奈米線表面的氧,但氫電漿可能對奈米線造成蝕刻,表面的磷可能在蝕刻的過程被電漿打掉造成場發射氣使電場下降。而熱退火造成矽奈米線表面磷的濃度改變及在表面形成氧化層導致起始電場上升。
第二部分以兩種方式製作平面孔洞及金字塔孔洞結構矽基太陽能電池以及奈米孔洞奈米線結合矽基太陽能電池。其一為氫氧化鈉對奈米線進行浸泡形成孔洞,金字塔孔洞有著比平面孔洞更佳的全反射率4.49 %及在可見紫外光區較佳的光響應,短路電流到達32.38 mA/cm2轉換效率達到11.64 %,其二為利用銀薄膜經過退火處理後利用和矽之間產生應力形成金屬顆粒,利用銀金屬顆粒當作蝕刻遮罩蝕刻孔洞結構。金字塔孔洞依然有著比平面孔洞更佳的全反射率6.66 %,短路電流到達32.2 mA/cm2轉換效率達到10.5 %,以此結構與奈米線結後全反射率降低到3.56 %,短路電流及開路電壓提升到34.9 mA/cm2及555 mV,得到更佳轉換效率12.7 %。


Several cold cathode materials were developed for field emission display applications, however most of them suffer from long life-stability issue and reliability. Moreover low turn on field is an important property for the progress of commercial electron field emitters (EFE). In this thesis work, the first application we enhanced the stability and EFE properties by utilizing of two layers of graphene on phosphorus silicate glass (PSG) diffused Si nanowires. PSG doped p-type nanowire provides large E0 value of 3.28 V /μm with poor stability.

Other application of this thesis work focus the efficiency improvement of silicon-based solar cells. The nanoholes/porous structure and pyramid-nanoholes were fabricated and synthesized. The pyramid-nanoholes were decreased total reflectance rate of 4.49% at the visible to ultraviolet light, is better than nanoholes. The short-circuit current improves to 32.38 mA/cm2 and the best of conversion efficiency rate is 11.64%. Other hand, silver films were coated on Pyramid nanoholes and consequently annealed at 500°C for 1hr. The Silver coated pyramid nanohole attains total reflection rate of 6.66% than nanohole, where the short circuit current increase up to 32.2mA/cm2 with conversion efficiency rate of 10.5%. Also these composite materials with porous structure achieves total reflection rate low as 3.56%, short and open circuit voltage improves to 34.9 mA/cm2 and 555 mV with the best conversion efficiency of 12.7%

中文摘要 英文摘要 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻探討 4 2.1 場發射原理簡介 4 2.2 太陽能電池簡介 5 2.2.1 單晶矽太陽能電池 6 2.2.2 太陽光譜 8 2.2.3 太陽能電池介紹 12 2.3 矽奈米結構簡介 15 2.3.1 金字塔結構 15 2.3.1.a 金字塔結構介紹 15 2.3.1.b 金字塔結構蝕刻機制 16 2.3.2 矽奈米線/奈米孔洞結構 18 2.3.2.a 矽奈米孔洞結構介紹 18 2.3.2.b 矽奈米孔洞結構蝕刻機制 18 第三章 實驗方法 22 3.1 場發射元件 22 3.1.1 晶圓清洗 23 3.1.2 奈米結構製作 23 3.1.3 P-N接面之製作 24 3.1.4 後處理 25 3.1.4.a 氫電漿後處理 25 3.1.4.b 熱退火後處理 26 3.1.5 元件製作 26 3.2 太陽能電池元件製作 28 3.2.1 晶圓清洗 30 3.2.2 金字塔結構製備 30 3.2.3 奈米孔洞結構之製備 31 3.2.3.a 利用NaOH處理之孔洞結構 31 3.2.3.b 利用銀薄膜退火形成孔洞結構 32 3.3.4 P-N接面之製作 32 3.3.5 太陽能電池電極製作 34 3.3 實驗分析儀器介紹 36 3.3.1 場發射掃描式電子顯微鏡附X光能譜分析儀 ( FE-SEM/ EDS ) 36 3.3.2 紫外線-可見光分光光譜儀 ( UV-VIS ) 37 3.3.3 量子效率量測系統 ( IPCE ) 37 3.3.4 太陽能電池電性量測系統(IV) 37 3.3.5飛行時間二次離子質譜儀 (Time-of-Flight Secondary Ion Mass Spectrometer) 37 3.3.6 拉曼光譜儀(Raman Spectrometer) 38 3.3.7 功函數量測儀(Work function measurement system) 39 3.3.8 X光光電子能譜儀(X-ray photoelectron spectroscopy) 39 3.3.9 穿透式電子顯微鏡(X-ray photoelectron spectroscopy) 40 第四章 矽奈米線場發射元件之製作 42 4.1 以PSG摻雜之矽奈米線場發射元件 42 4.2 氫電漿及熱退火處理對PSG摻雜之矽奈米線場發射元件之影響 54 第五章 矽奈米孔洞太陽能電池之製作 61 5.1 物理沉積銀粒子/化學沉積銀離子 61 5.2 平面矽奈米孔洞太陽能電池 62 5.2.1 以鹼性溶液後處理之平面矽奈米孔洞太陽能電池 62 5.2.2 以銀薄膜退火當蝕刻遮罩之平面矽奈米孔洞太陽能電池 77 5.2.3 以銀薄膜退火當蝕刻遮罩之平面矽奈米孔洞/矽奈米線太陽能電池 ..89 5.2.4 平面孔洞太陽能電池比較 97 5.3 金字塔矽奈米孔洞太陽能電池 100 5.3.1 以鹼性溶液後處理之金字塔結構矽奈米孔洞太陽能電池 100 5.3.2 以銀薄膜退火當蝕刻遮罩金字塔矽奈米孔洞太陽能電池 115 5.3.3 以銀薄膜退火當蝕刻遮罩金字塔矽奈米孔洞/矽奈米線太陽能電池..126 5.3.4 金字塔孔洞太陽能電池比較 135 第六章 結論與未來展望 139 6.1 結論 139 6.2 未來展望 142 參考文獻 144

1. https://www.ls-energy.hk/kl_energy_04.php
2. http://www.shs.edu.tw/works/essay/2013/03/2013032514304415.pdf
3. http://web.it.nctu.edu.tw/~FMPANLAB/fed1.htm
4. A. K. Geim, K. S. Novoselov. The rise of graphene.Nature Mater, 6, 183 (2007).
5. http://en.wikipedia.org/wiki/Graphen.
6. http://www.ngmchina.com.cn/web/?action-viewnews-itemid-167352
7. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau
Superior thermal; conductivity of single-layer graphene.Nano Lett, 8,902-907(2008).
8. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,
H.L. Stormer. Ultrahigh electron mobility in suspended grapheme.Solid State Commun, 146,351-355 (2008).
9. B.Partoens,F.M. Peeters. From graphene to graphite:electronic structure around the k point. Physics ReviewB,74,075404(2006)
10. P.R.Somani,S.P.Somani,M.Umeno. Planer nano-graphenes from camphor by ful6u CVD.Chemical Physics Letters,430, 56-59(2006).
11. Q.Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei.Graphene segregated on Ni surfaces and transferred to insulators. Appl.Phys.Lett.93, 113103(2008)
12. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff .Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324,1312-1314(2009).
13. M. A. Green, K. Emery, D. L. King, Y. Hishikawa, and W. Warta, “Solar Cell Efficiency Tables (Version 28) ”, Prog. Photovoltaics Res. Appl. 14, 455-461 (2006).
14. 顧鴻壽,太陽能電池元件導論:材料、元件、製程、系統,全威圖書有限公司,中華民國98年10月12日.
15. 楊昌中,能源領域中的奈米科技研究,工業研究院 能源與環境研究所,中華民國98年10月12日.
16. NREL, Best Research Cell Efficiencies 2013.
17. Hong Xiao,半導體製程技術導論,台灣培生教育出版有限公司,中華民國96年2月.
18. Green Rhino Energy Solar Power.
19. C. Riordan and R. Hulstrom,“What is an air mass 1.5 spectrum ?,”Record of the IEEE Photovoltaic Specialists Conference, vol.2, pp.1085-1088, 1990.
20. Natalya V. Yastrebova, “High-efficiency multi-junction solar cells: Current status and future potential” Centre for Research in Photonics, University of Ottawa, April 2007.
21. Dieter K. Schroder, “Semiconductor Material and Device Characterization, 2006.
22. Jianhua Zhao., “24% Efficient perl silicon solar cell:Recent improvements in high efficiency silicon cell research,” Solar Energy Materials and Solar Cells, vol.41-42,pp.87-99, 1996.
23. F. Llopis and I. Tobı´as “Influence of Texture Feature Size on the Optical Performance of Silicon Solar Cells,” Progress in photovoltaics: research and applications vol.13, pp.27-26, 2005.
24. Mohammad Jellur Rahman, “Lecture Notes on Structure of Matter,“ Department of Physics BUET, Dhaka-1000.
25. Bean,K.E., “Anisotropic etching of silicon,” IEEE Trans. Electron Devices, ED-25, pp.1185, 1978.
26. H.Seidel, L.Cspregi, A.Heuberger, H.Baumgsrtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, ”J.Electrochem, vol.137, pp.3612-3626, 1990.
27. W.K. Choi., “Characterisation of pyramid formation arising from the TMAH etching of silicon,” Sensors and Actuator, vol. A 71, pp. 238-243, 1998.
28. Waheed A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dot, Journal of Advanced Research
29. E. Galeazzo, H.E.M. Peres, G. Santos, N. Peixoto, F.J. Ramirez-Fernandez, Gas sensitive porous silicon devices responses to organic vapors, Sensors and Actuators B 93 (2003) 384–390
30. Stephanie Pace, Roshan B Vasani, Wei Zhao, Sébastien Perrier, and Nicolas H Voelcker1, Photonic porous silicon as a pH sensor, Pace et al. Nanoscale Research Letters 2014, 9:420
31. Porous Silicon for Sensor Applications
32. Serdar Ozdemir, James L. Gole, The potential of porous silicon gas sensors, Solid State and Materials Science 11 (2007) 92–100
33. Farid A.Harraz, Porous silicon chemical sensors and biosensors A review, Sensors and Actuators B 202(2014)897–912
34. Jeong Kim, Formation of a Porous Silicon Anti -Reflection Layer for a Silicon Solar Cell, Journal of the Korean Physical Society, Vol. 50, No. 4, April 2007, pp. 1168-1171
35. Jihun Oh, Hao-Chih Yuan and Howard M. Branz, An 18.2%-efficient black-silicon solar cell achieved through controI of carrier recombination in nanostructures, NATURE NANOTECHNOLOGY VOL 7
36. Rajib Chakraborty & Reshmi Das, Metal-Assisted Porous silicon formation using solution deposition of nanoscale silver films, Journal of Optics
37. Kyumin Hana, M. Thamilselvana, b, Kyunghae Kima, Minkyu Jua, Young Kuk Kima, Inyong Moona, Kyungsoo Leea, Dohyun Kyunga, Taeyoung Kwona, Junsin Yia, Novel texturing of tri-crystalline silicon surfaces, Volume 93, Issues 6–7, June 2009, Pages 1042–1046
38. Kuiqing Peng, Ying Xu, Yin Wu, Yunjie Yan, Shuit-Tong Lee, and Jing Zhu, Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications, Small Volume 1, Issue 11, pages 1062–1067, November 2005
39. Kazuya Yamamura and TakuroMitani, Etching characteristics of local wet etching of silicon in HF / HNO3 mixtures, Surf. Interface Anal. 2008, 40, 1011–1013
40. Zhenqiang Xi, Deren Yang, Wu Dan, Chen Jun, Xianhang Li and Duanlin Que, Texturization of cast multicrystalline silicon for solar cells, Semicond. Sci. Technol. 19 (2004) 485–489
41. Shasha Lv, Zhengcao Li, Chienhua Chen, Jiecui Liao, Guojing Wang,† Mingyang Li, and Wei Miao “Enhanced Field Emission Performance of Hierarchical ZnO/Si
Nanotrees with Spatially Branched Heteroassemblies”, ACS applied material and interface (2015), 7, 13564−13568
42. M. K. M. Ali, K. Ibrahim, E.M. Mkawi and A. Salhin” Characterization of Phosphoric Acid Doped N-type Silicon Thin Films Printed on ITO Coated PET Substrate”, Int. J. Electrochem. Sci., 8 (2013) 535 – 547
43. Shih-Fong Lee, Li-Ying Lee and Yung-Ping Chang “The Effect of Hydrogen Plasma Treatment on the Field-Emission Characteristics of Silicon Nanowires”
44. S. Pandey, P. Rai, S.Patole, F.Gunes, G. D. Kwon, J. B.Yoo, P. N,S. Arepalli. Improved electron field emission from morphologically disordered monolayer graphene.APPLIED PHYSICS LETTERS,100, 043104 (2012)
45. W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, S. S. Pei,"Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing",Sensors and Actuators B ,150, 296–300 (2010)
46. K. S. Hazra, N. A. Koratkar, D. S. Misra.Improved field emission from multiwall carbon nanotubes with nano-size defects produced by ultra-low energy ionbombardment.Carbon,49, 14, 4760–4766( 2011).
47. L. Jiang, T. Yang. Controlled Synthesis of Large-Scale, Uniform, Vertically Standing Graphene for High-Performance Field Emitters. Advanced Materials, 25, 2, 292 (2013).
48. J. Liu, B.Zeng, Z. Wu,J. Zhu, X.C. Liu. Improved field emission property of graphene paper by plasma treatment.Appl. Phys. Lett. 97, 033109 (2010).
49. N. Fukata, T. Oshima, N. Okada, S. Matsushita, T. Tsurui, J. Chen1, T. Sekiguchi and K. Murakami,” Phonon Confinement and Impurity Doping in Silicon Nanowires Synthesized by Laser Ablation”, Solid State Phenomena Vols. 131-133 "(2008) pp 553-558
50. Min Qian, Tao Feng, Hui Ding, Lifeng Lin, Haibo Li, Yiwei Chen and Zhuo Sun,” Electron field emission from screen-printed graphene films”, Nanotechnology 20 (2009) 425702 (6pp)
51. “光譜響應/量子效率於太陽能電池製程改善上的應用”
52. Jihun Oh, Hao-Chih Yuan and Howard M.Branz,“An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures” 2012
53. https://en.wikipedia.org/wiki/Raman_spectroscopy

QR CODE