簡易檢索 / 詳目顯示

研究生: 林立
Li - Lin
論文名稱: 300 W個人電腦電源供應器之實現與分析
Implementation and Analysis of a 300-W PC Power Supply
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 王見銘
Chien-Ming Wang
劉邦榮
Pang-Jung Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 139
中文關鍵詞: 交錯式邊界導通模式功率因數修正電路半橋式串聯諧振轉換器同步整流同步降壓型轉換器損耗分析
外文關鍵詞: Interleaved BCM PFC, half-bridge SRC, synchronous rectification, synchronous buck, loss analysis
相關次數: 點閱:512下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文主要研製一300瓦個人電腦電源供應器,輸出規格如下:12 V/16.3 A、5 V/12 A、3.3 V/10.5 A、-12 V/0.4 A與一組待機電源5 V/2 A。前級使用雙相交錯式邊界導通模式功率因數修正電路,用以提升電路轉換效率與功率因數,提供穩定電壓且減少輸入電流的總諧波失真率。DC/DC架構選用半橋式串聯諧振轉換器以提供12 V輸出,電路具有零電壓切換特性可減少變壓器一次側開關切換損耗,以及利用同步整流技術降低二次側導通損失。雙組同步降壓型轉換器提供5 V與3.3 V輸出。並設計一返馳式轉換器電路架構,提供待機與輔助電源。
本論文所實現之作品,轉換效率與功率因數皆符合能源之星要求的規範,並比較單組輸出串聯諧振轉換器與雙組輸出串聯諧振轉換器整體效率,將同步降壓型轉換器電路模組縮小化,降低電路輸入電壓使開關導通時間增加責任週期以減少損失,提升電路轉換效率。實驗結果顯示,雙組輸出並無提升整體效率,進一步分析同步降壓型轉換器損耗,實驗證明降低其輸入電壓轉換效率提升,並可藉由損耗分析對電路設計提供改善之方向。


In this thesis, a 300-watt power supply for PC is realized. The output specifications of the developed power supply are: 12 V/16.3 A, 5 V/12 A, 3.3 V /10.5 A, -12 V/400 mA with an additional 5-V/2-A standby power supply. Interleaved two-phase boundary conduction mode power factor correction circuit is adopted as the pre-regulator to enhance the conversion efficiency, raise the input power factor and reduce the input current harmonics. The DC/DC converter is implemented by using a half-bridge series resonant converter (SRC) topology to provide a 12-V output. The secondary DC/DC stage consists of two synchronous buck converters supplying 5-V and 3.3-V output voltages. The flyback converter is adopted to provide the auxiliary and standby power supply.
Experimental results of a prototype circuit are shown to verify the feasibility of the studied power supply system. Both the conversion efficiency and power factor meet the requirements of Energy Star specifications. Conversion efficiencies are compared for single-output and dual-output SRCs. By calculating and analyzing the loss distributions of the synchronous buck converters, the circuit design can be optimized.

摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究內容 3 1.3 論文內容大綱 5 第二章 主動式功率因數修正器原理與架構 7 2.1 功率因數修正器特點 7 2.2 功率因數修正電路控制模式 7 2.3 雙相交錯式升壓型轉換器介紹 9 2.3.1 雙相交錯式升壓型轉換器電路分析 10 2.3.2 雙相交錯式升壓型轉換器動作時序分析 11 第三章 半橋式串聯諧振轉換器原理與架構 16 3.1 理想R-L-C串聯電路頻率響應 16 3.2 半橋式串聯諧振轉換器 18 3.2.1 SRC諧振模式 19 3.2.2 LLC諧振模式 20 3.2.3 SRC與LLC比較 22 3.3 SRC主架構動作狀態分析 24 3.4 LLC主架構動作狀態分析 33 3.5 同步整流技術 41 3.5.1 同步整流技術優點 41 3.5.2 同步整流技術之訊號控制 42 第四章 降壓型轉換器電路原理與架構 43 4.1 降壓型轉換器電路原理 43 4.2 同步降壓型轉換器 47 4.2.1 連續導通模式之動作分析 48 4.2.2 不連續導通模式之動作分析 51 4.2.3 總結 56 第五章 返馳式轉換器電路原理與架構 57 5.1 返馳式轉換器電路原理 57 5.2 理想條件下CCM與DCM導通狀態 60 5.2.1 理想條件下CCM導通狀態 60 5.2.2 理想條件下DCM導通狀態 60 5.3 非理想條件下CCM與DCM導通狀態 61 5.3.1 非理想條件下CCM導通狀態 61 5.3.2 非理想條件下DCM導通狀態 62 第六章 電路設計 63 6.1 雙相交錯式主動功率因數修正器電路設計 63 6.1.1 UCC28060簡介 63 6.1.2 電路規格 65 6.1.3 功率因數修正器功率級元件設計 65 6.2 半橋式串聯諧振轉換器電路設計 69 6.2.1 UCC25600簡介 69 6.2.2 電路規格 71 6.2.3 半橋串聯諧振轉換器功率級元件設計 71 6.3 同步降壓型轉換器電路設計 77 6.3.1 SG1577簡介 77 6.3.2 電路規格 78 6.3.3 同步降壓型轉換器功率級元件設計 79 6.4 返馳式轉換器電路設計 81 6.4.1 ICE2A265簡介 81 6.4.2 電路規格 82 6.4.3 返馳式轉換器功率級元件設計 83 第七章 實驗數據與結果 86 7.1 主動式功率因數修正電路實測波形及數據 86 7.1.1 電路實測波形 86 7.1.2 電路實測數據 93 7.2 半橋式串聯諧振轉換器電路實測波形及數據 94 7.2.1 電路實測波形 94 7.2.2 電路實測數據 97 7.3 降壓型轉換器電路實測波形及數據 98 7.3.1 電路實測波形 98 7.3.2 電路實測數據 101 7.4 返馳式轉換器電路實測波形及數據 101 7.4.1 電路實測波形 101 7.4.2 電路實測數據 104 7.5 個人電腦電源整體電路實測數據 104 7.5.1 單組整體電路量測數據 104 7.5.2 雙組整體電路量測數據 105 7.5.3 電路損耗分析 106 7.5.4 降壓型轉換器對應不同輸入電壓損耗分析 109 第八章 總結與未來展望 120 8.1 總結 120 8.2 未來展望 121 參考文獻 122

[1] H. S. Athab and P. K. Shadhu, “A cost effective method of reducing total harmonic distortion (THD) in single-phase boost rectifier,” in Proc. International Conference on Power Electronics and Drive Systems (PEDS), pp. 669-674, Nov. 2007.
[2] Energy Star, 2008: http://www.energystar.gov/
[3] Y. Jang, D. L. Dillman and M. M. Jovanovic, “A new soft-switched PFC boost rectifier with integrated flyback converter for stand-by power,” IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 66-72, Jan. 2006.
[4] G. C. Hsieh, C. Y. Tsai, and W. L. Hsu, “An improved flyback converter,” in Proc. International Conference on Electrical Engineering / Electronics, Computer, Telecommunications and Information Technology (ECTICON), pp. 310-313, May 2009.
[5] G. M. Ponzo, G. Capponi, P. Scalia, and V. Boscaino, “Synchronous rectification LLC series-resonant converter,” in Proc. IEEE Applied Power Electronics Conference (APEC), pp. 1003-1009, Feb. 2007.
[6] H. Choi, “Analysis and design of LLC resonant converter with integrated transformer,” in Proc. IEEE Applied Power Electronics Conference (APEC), pp. 1630-1635, Feb. 2007.
[7] C. H. Cheng and Y. C. Lee, “DC power supply based on half bridge LCC resonant converter,” in Proc. International Conference on Power Electronics and Drive Systems (PEDS), pp. 1102-1106, Nov. 2009.
[8] B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. V. Wyk, “Optimal design methodology for LLC resonant converter,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 533-538, March 2006.
[9] R. Cheng, Y. Yang, and Y. Jiang, “Design of LLC resonant converter with integrated magnetic technology,” in Proc. Proceedings of the Eighth International Conference on Electrical Machines and Systems (ICEMS), pp. 1351-1355, Sept. 2005.
[10] K. H. Yi, B. C. Kim, and G. W. Moon, “Design of LLC resonant converter with integrated magnetic technology,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), pp. 754-757, Sept. 2009.
[11] G. C. Hsieh, C. Y. Tsai, and W. L. Hsu, “Synchronous rectification LLC series-resonant converter,” in Proc. IEEE Applied Power Electronics Conference (APEC), pp. 1003-1009, Feb. 2007.
[12] C. Hao, E. K. K. Sng, and K. J. Tseng, “Optimum trajectory switching control for series parallel resonant converter,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1555-1563, Oct. 2006.
[13] G. C. Hsieh, C. Y. Tsai, and W. L. Hsu, “A novel precise design method for LLC series resonant converter,” in Proc. International Telecommunications Energy Conference (INTELEC), pp. 1-6, Sept. 2006.
[14] S. Dalapati, S. Ray, S. Chaudhuri, and C. Chakraborty, “Control of a series resonant converter by pulse density modulation,” in Proc. Proceedings of the IEEE INDICON 2004. First India Annual Conference (INDICO), pp. 601-604, Dec. 2004.
[15] K. Rahimi, A. N. Motlagh, and M. Pakdel, “A novel soft-switched synchronous buck converter,” in Proc. IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1345-1351, Sept. 2009.
[16] K. I. Hwu and Y. T. Yau, “Simple design of a soft-switching buck converter,” in Proc. IEEE International Conference on Sustainable Energy Technologies (ICSET), pp. 410-414, Nov. 2008.
[17] Z. H. Yang, S. Ye, and Y. F. Liu, “A new resonant gate drive circuit for synchronous buck converter,” IEEE Transactions on Industrial Electronics, vol. 22, no. 4, pp. 1311-1320, July 2007.
[18] C. Yang, P. Asadi, and P. Parto, “Comparative analysis of power stage losses for synchronous buck converter in diode emulation mode vs. continuous conduction mode at light load condition,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1578-1583, Feb. 2010.
[19] C. Attaianese, V. Nardi, F. Parillo, and G. Tomasso, “Dual boost high performances power factor correction (PFC),” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1027-1032, Feb. 2008.
[20] J. C. Wang and H. J. Chen, “Design and analysis of AC/DC converters with interleaved power factor correction,” in Proc. IET Conference on Power Electronics, Machines and Drives (PEMD), pp. 485-489, April 2008.
[21] A. A. Bento, E. R. d. Silva, and E. C. d. Santos Jr., “Reducing the inductor size and current stress by interleaved bidirectional boost rectifiers used for power factor correction,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 273-279, March 2006.
[22] I. H. Oh, “A soft-switching synchronous buck converter for Zero Voltage Switching (ZVS) in light and full load conditions,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1460-1464, Feb. 2008.
[23] Q. Zhao and G. Stojcic, “Characterization of Cdv/dt induced power loss in synchronous buck DC-DC converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 292-297, Sept. 2004.
[24] W. P. Zhang, Y. C. Liu, Z. Li, and X. Q. Zhang, “The dynamic power loss analysis in buck converter,” in Proc. International Power Electronics and Motion Control Conference (IPEMC), pp. 362-367, May 2009.
[25] International Rectifier, “IR1167, Smart rectifier control IC, ” Data Sheet, PD60254A, April 2006.
[26] Texas Instruments Incorporation, “UCC28060, Natural interleaving dual-phase transition-mode PFC controller,” Data Sheet, Slus767A, May 2007.
[27] Texas Instruments Incorporation, “UCC25600, 8-Pin High Performance Resonant Mode Controller,” Data Sheet, Slus846, Sept. 2008.
[28] Fairchild Semiconductor Corporation, “SG1577, Dual Synchronous DC/DC Controller,” Data Sheet, Rev. 1.0.1, April 2008.
[29] Infineon Technologies, “ICE2A265, Off-Line SMPS Current Mode Controller with integrated CoolMOS,” Data Sheet, Rev.2, Jun 2004.

無法下載圖示 全文公開日期 2015/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE