簡易檢索 / 詳目顯示

研究生: 賴峰甫
Fong-Fu Lai
論文名稱: 撓性車輛主動式懸吊系統之動態建模與強健性控制器設計
Dynamic Modeling and Robust Control of an Active Suspensions System
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
江茂雄
Mao-Hsiung Chiang
張嘉德
Chia-De Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 83
中文關鍵詞: 主動式懸吊系統H∞控制動態建模漢米頓原理拉格朗日方程式
外文關鍵詞: Active suspension system, H∞, Dynamic modeling, Hamilton’s principle, Lagrange’s equation.
相關次數: 點閱:257下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以H∞控制方法來設計撓性車體及輪軸之1/2車主動式懸吊系統(Active suspension),其中包含兩個主要部分:即系統動態建模與控制。首先,以漢米頓原理(Hamilton’s principle)得到撓性車體及輪軸之動態方程式及邊界條件,再利用模態加總法(Mode summation)求得撓性梁上任一點之位移,最後以拉格朗日方程式(Lagrange’s equation)求得1/2車主動式懸吊系統之二階常微分方程式並以狀態方程式(State equation)表示。在控制器設計上,先分析系統頻域及時域特性,以H∞控制理論根據頻域特性設計達到時域要求之控制器。模擬結果顯示,H∞控制方法比傳統被動式懸吊系統更有效降低車身之振動,亦可增進車輛行駛的安全性和舒適性。
    撓性車輛為一連續性分部參數系統(Distributed parameter system),在控制系統設計中將連續系統化為無限多之單自由度系統組合表示之,如此一來便不會有因模態截斷法設計造成的控制或觀測超溢(Control and observation spill over)的問題發生,且只需一組感測器及致動器即可有效抑制系統振動,較一般文獻所提的分佈致動器法更能在實際運用上實現。在本論文中各懸吊系統採用一組感測器與致動器分離之控制器做設計,經由模擬結果顯示,此方法確實有效消除系統無限多個模態之振動以及穩態誤差,並且減少干擾對撓性1/2車懸吊系統的影響。


    The development and implementation of controlled suspension systems to provide higher levels of ride isolation and road holding has spurred a great deal of interests among control researchers. This thesis is concerned with some control issues for a flexible one-half car suspension system. It includes system mathematical modeling, dynamic analysis, and controller design. A realizable actuator and a sensor are applied to design the control system. First, Hamilton principle is used to derive the equations of motion and boundary conditions of the suspension system. Then, the displacement at any point along the vehicle body and wheel axle can be derived from Mode summation method. Next, the Lagrange's equation is used to formulate the second order equation of the active suspension system and represented in state space form. It is well known that, we can obtain low oscillation and passengers can feel not only the comfortable ride quality but also the safety of the vehicle. The H∞ performance is used to measure the ride comfort such that more general road disturbance can be considered.
    Many control system design methods for a flexible manipulator are either based on reduced order model or require distributed actuators, which are not available in reality. Because the control design and the computer simulation are based on the concept of the infinite dimensional system, there will not “control and observation spillover problems” happen and computational error concern which are encountered in most of the control of flexible structures. In this thesis, by using a discrete set of actuator and sensor without involving truncation of the higher frequency modes, it can be seen from computer simulation, the designed control system for a flexible one-half car suspension system can not only stabilize all the vibration modes but also can eliminate the steady state errors.

    目錄 摘要I AbstractII 誌謝III 目錄IV 圖表索引VI 第1章緒論 1 1.1前言1 1.2懸吊系統的種類2 1.3研究動機與目的6 1.4文獻回顧7 1.5研究流程10 第2章車輛系統之數學模式推導11 2.1撓性1/2車模型之建立11 2.2撓性車體及輪軸動態方程式推導13 2.2.1偏微分方程式堆導15 2.2.2特徵值及特徵函數16 2.2.3動態方程式23 2.31/2車懸吊系統之運動方程式25 第3章H∞控制理論29 3.1範數29 3.2一般化控制問題32 3.3廣義的控制問題35 3.4求解H∞控制問題37 3.5H∞控制的強健穩定與性能41 3.5.1小增益定理42 3.5.2乘積不確定性42 3.5.3加法不確定性44 3.5.4靈敏度函數、互補靈敏度函數及控制能量函數45 第4章控制器設計與電腦模擬50 4.1車輛行駛乘舒性50 4.2混合靈敏度問題51 4.3H∞控制器設計52 4.3.1權重函數選取53 4.3.2懸吊系統模擬56 4.4模擬結果與討論70 第5章結論與未來研究方向73 5.1結論73 5.2未來研究方向74 附錄一80 附錄二83

    [1]Appleyard, M., and Wellstead, P. E., “Active Suspension: Some Background”, IEE Proc,-control Theory Appl., Vol. 142, No. 2, pp. 123-128, 1995.
    [2]劉玉文,葉文裕,盧士一, “拖車司機振動暴露調查研究”, 勞工安全衛生研究季刊,第十四卷第四期,第304-314頁,民國九十一年十二月。
    [3]Pepo, M. H., Wilder, D. G., and Magnusson, “Possible Mechanism of Low Back Pain Due to Whole-Body Vibration”, Journal of Sound and Vibration, Vol. 215(4), pp. 687-697, 1998.
    [4]黃靖雄, “現代汽車底盤”,全華科技圖書,1995。
    [5]Hrovat, D., “Optimal Suspension Performance for 2-D Vehicle Models”, Journal of Sound and Vibration, Vol. 146, pp.93-110, 1991.
    [6]Hrovat, D., “Applications of Optimal Control to Advanced Automotive Suspension Design”, ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 115, pp. 328-342, 1993.
    [7]Ulsoy, A. G., Hrovat, D., and Tseng, T., “Stability Robustness of LQ and LQG Active Suspensions”, ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 116, pp. 123-131, 1994.
    [8]Yu, F., and Crolla, D. A., “An Optimal Self-Tuning Controller for an Active Suspension”, Vehicle System Dynamics, Vol. 29, pp. 51-65, 1998.
    [9]Li, K., and Nagai, M., “Control and Evaluation of Active Suspension for MODF Vehicle Model”, JSAE Review 20, pp. 343-348, 1999.
    [10]Esmailzadeh, E., and Fahimi, F., “Optimal Adaptive Action Suspensions for Full Car Model”, Vehicle System Dynamics, Vol. 27, pp. 89-107, 1997.
    [11]Chou, J. H., Chen, S. H., and Lee, F. Z., “Grey-Fuzzy Control for Active Suspension Design”, Int. Journal of Vehicle Design, Vol. 19, No. 1, pp. 65-77, 1998.
    [12]Yeh, E. C., and Tsao, Y. J., “A fuzzy Preview Control Scheme of Active Suspension for Rough Road”, Int. Journal of Vehicle Design, Vol. 100, pp .166-180, 1994.
    [13]Rao, M. V. C., and Prahlad, V., “A Tunable Fuzzy Logic Controller for Vehicle-Active Suspension System”, Fuzzy Sets and Systems, Vol. 85, pp. 11-21, 1997.
    [14]Al-Holou, N., Weaver, J., and Joo, D. S., “Adaptive Fuzzy Logic Based Controller for An Active Suspension System”, IEEE Circuits and Systems, Vol. 2, pp. 583-586, 1996.
    [15]Yoshimura, T., Isari, Y., Li, Q., and Hino, J., “Active Suspension of Motor Coashes Using Skyhook Damper and Fuzzy Logic Control”, Control Engineering Practice, Vol. 7, nl, pp. 41-47, 1999.
    [16]Yagiz, N., Ozbulur, V., Inan, N., and Derdiyok, A., “Sliding Modes Control of Active Suspensions”, Proceedings of the 12th IEEE International Symposium on Intelligent Control, pp. 349-353, 1997.
    [17]Choi, S. B., Choi, Y. T., and Park, D. W., “A Sliding Mode Control of a Full-Car Electrorheological Suspension System Via Hardware in-the-Loop Simulation”, ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 122, pp. 114-121, 2000.
    [18]Ting, C. S., Li, T. H. S., and Kung, F. C., “Design of Fuzzy Controller for Active Suspension System”, Mechatronics, Vol. 5, No. 4, pp. 365-383, 1995.
    [19]Kurimoto, M., and Yoshimura, T., “Active Suspension of Passenger Cars Using Sliding Mode Controllers(Based on Reduced Models)”, Int. Journal of Vehicle Design, Vol. 19, No. 4, pp. 402-414, 1998.
    [20]Moran, A., and Nagai, M., “Optimal Active Control of Nonlinear Vehicle Suspension Using Neural Networks”, JSME Int. J. Ser. C, Vol. 37, No. 4, pp. 707-718, 1994.
    [21]Kuo, Y. P., and Li, T.-H. S. “GA-Based Fuzzy PI/PD Controller for Automotive Active Suspension System”, IEEE Transactions on Industrial Electronics, Vol. 46, No. 6, pp. 1051-1056, 1999.
    [22]Karnopp, D., and So, S. G., “Energy Flow in Active Attitude Control Suspensions A Bond Graph Analysis”, Vehicle System Dynamics, Vol. 29, pp. 69-81, 1998.
    [23]Moran, A. and Nagai, M. “Analysis and Design of Active Suspensions by Robust Control Theory”, JSME Int. J., Series III, vol. 35, No. 3, pp. 427–437, 1992.
    [24]Michelberger, P., Palkovics, L., and Bokor, J. “Robust Design of Active Suspensions Systems”, Int. Journal of Vehicle Design, Vol. 14, nos2/3, pp. 145-165, 1993.
    [25]Sammer, D., Sename, O., and Dugard, L., “ Control of Active Vehicle Suspensions”, Proceedings of the 2000 IEEE International Conference on Control Applications, pp. 976-981, 2000.
    [26]Gordon, T. J., Marsh, C., and Milsted, M. G., “A Comparison of Adaptive LQG and Nonlinear Controllers for Vehicle Suspension Systems”, Vehicle System Dynamics, Vol. 20, pp. 321-340, 1991.
    [27]Ulsoy, A. G., Hrovat, D., and Tseng, T., “Stability Robustness of LQ and LQG Active Suspensions”, ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 116, pp. 123-131, 1994.
    [28]Hayakawa, K., Matsumoto, K., Yamashita, M., Suzuki, Y., Fujimori, K., and Kimura, H., “Robust -Output Feedback Control of Decoupled Automobile Active Suspension Systems”, IEEE Transactions on Automatic Control, Vol. 44, No. 2, pp. 392-396, 1999.
    [29]Ray, L. R., “Robust Linear-Optimal Control Laws for Active Suspension Systems”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 114, pp. 592-598, 1993.
    [30]DoyIe, J., C., GIover, K., Khargonekar, P., and Francis, B. A., “State Space Solutions to Standard and Control Problems”, IEEE Trans. Automat Contr., Vol. 34, pp. 831-846, 1989.
    [31]楊憲東,葉芳柏,線性與非線性 控制理論,全華圖書,1997。
    [32]Hac, A., Youn, I., and Chen, H., “Control of Suspensions for Vehicle with Flexible Bodies part 1 : Active Suspensions, part 2 : Semi-Active Suspensions”, ASME Journal of Dynamic Systems, Measurement, and Control, pp. 508-525, 1996.
    [33]張旭男,“模糊- 強健控制器漁船舶航向控制之研究”,國立成功大學造船暨船舶機械工程研究所碩士論文,1998.
    [34]“ISO 2631/1:Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration, Part 1. General Requirements”, 1997。
    [35]Kuo, C., F., and Lin, S., C., “Lead with Closed-Loop System Compensation of A Radically Rotating Elastic Rod Attached to A Rigid Body Part Ⅰ: A Unified Attached to the Design of Linear Control System”, Mathl. Comput. Modelling, Vol. 27, No.7, pp. 79-101, 1998
    [36]Hac, A., “Suspension Optimization of A 2-DOF Vehicle Model Using A Stochastic Optimal Control Technique,” Journal of Sound and Vibration, Vol. 100, No. 3, pp. 343-357, 1985.

    QR CODE