簡易檢索 / 詳目顯示

研究生: 張宇騏
Yu-Chi Chang
論文名稱: 具線上粒子群演算法之最佳功率調度直流/直流轉換器
Power Dispatch for a DC/DC Converter by On-line Particle Swarm Algorithm
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 陳良瑞
Liang-Rui Chen
鄧人豪
Jen-Hao Teng
連國龍
Kuo-Lung Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: 太陽能發電系統寬輸入電壓範圍最大功率點追蹤並聯輸入串並聯輸出全橋轉換器
外文關鍵詞: photovoltaic, wide input voltage range, maximum power point tracking, parallel input, series-parallel output, H-bridge converter
相關次數: 點閱:357下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在設計與製作一應用於寬電壓範圍如太陽能發電系
    統之並聯輸入串並聯輸出直流/直流轉換器,所提架構包含三組不同
    額定功率之相移式全橋轉換器與一串並聯切換電路。三組相移式全橋
    轉換器的輸入端以並聯型式連接,輸出端則連接至串並聯切換電路,
    並根據系統輸入電壓和輸入功率,改變切換機制使其具有並聯或串聯
    等九種不同的連接狀態。當輸入電壓較低時,輸出端以串聯型式連接
    以達到高電壓增益;當輸入功率上升時,三組轉換器的輸出端採用並
    聯型式連接,以分擔輸出電流應力。為使系統輸入源獲得最大功率輸
    出,使用擾動觀察法作為最大功率追蹤策略。另一方面,藉由線上粒
    子群演算法,探討系統在並聯模式時的功率調度策略,使之在並聯時
    調度輸入功率以最佳化系統效率。最後,本論文建立一 5kW 系統進
    行評估以及測試,以數位處理器 TMS320F28069 作為控制器,並透過
    實驗結果驗證所提架構之可行性。


    The subject of this thesis is to design and implement an input-parallel
    and output-series-parallel DC/DC converter for wide voltage range
    application such as photovoltaic (PV) generation system. The proposed
    circuit consists of three phase-shift H-bridge converters with different
    power ratings and a series-parallel-switching circuit. The input ports of
    three H-bridges are parallel directly while the output ports can be parallel
    and/or series through a switching mechanism which provide nine different
    configurations of the output ports determined by the value of input voltage
    and the power provided by solar power panel. When the input voltage of
    the three H-bridge converters are low, connecting the output sides of the
    converters in series to obtain high voltage gain. And when the power of
    solar power panel rises, the converters connect in parallel to share the
    power. In this thesis, to achieve the maximum power point tracking from
    the input source by using the perturbation and observation method.
    Moreover, this thesis investigates the strategy of power dispatch when
    parallel configuration operating. By utilizing on-line particle swarm
    algorithm, the system dispatches the input power to maximize the system
    efficiency when in parallel mode. Finally, this paper established a 5kW
    prototype and using the digital signal processor (DSP TMS320F28069) as
    the controller. Experimental results demonstrate the validity of the
    proposed converter.

    摘要I AbstractII 致謝III 目錄IV 圖目錄VII 表目錄XI 第一章 緒論1 1.1 研究動機與目的1 1.2 系統描述與研究方法2 1.3 章節概述3 第二章 太陽能發電系統5 2.1 太陽能電池工作原理5 2.2 太陽能電池種類6 2.3 太陽能光電板特性8 2.4 最大功率追蹤法則介紹12 第三章 系統架構與原理18 3.1 隔離型直流/直流轉換器18 3.1.1 相移式全橋轉換器主架構介紹18 3.1.2 相移式全橋轉換器主電路控制信號介紹19 3.1.3 主電路轉換狀態區間操作原理分析21 3.1.4 零電壓切換條件分析31 3.2 轉換器規格分配介紹33 第四章 系統控制策略36 4.1 轉換器輸入輸出串並聯連接介紹36 4.2 串並聯切換電路39 4.2.1 串並聯切換電路主架構介紹39 4.2.2 串並聯切換電路主電路控制訊號介紹40 4.2.3 串並聯切換電路轉換狀態區間操作原理40 4.3 模式切換控制策略45 4.4 粒子群演算法介紹46 4.5 效率最佳化控制策略49 4.5.1 效率曲線擬合51 4.5.2 線性回歸-最小平方法51 4.5.3 應用PSO於最佳效率之輸出功率調度54 4.6 線上運算之輸入功率調度58 第五章 硬體架構與軟體規劃60 5.1 硬體架構60 5.1.1 相移式全橋轉換器硬體設計實例61 5.1.2 相移式全橋轉換器軟體控制策略73 5.2 串並聯切換電路設計考量80 5.2.1 串並聯切換電路硬體設計實例80 5.2.2 串並聯切換電路軟體控制策略82 第六章 實作與量測83 6.1 並聯輸入串並聯輸出隔離型直流/直流轉換器83 6.2 系統實測結果85 6.2.1 模式連續切換86 6.2.2 模式不連續切換96 6.3 效率最佳化線上運算之驗證104 第七章 結論與未來研究方向113 7.1 結論113 7.2 未來研究方向114 參考文獻115

    [1] A. V. Herzog, T. E. Lipman, J. L. Edwards, and D. M. Kammen, “Renewable
    energy: A viable choice,” Environment, vol. 43, no. 10, pp. 8-20, 2001.
    [2] J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M.
    P. Comech, R. Granadino, and J. I. Frau, "Distributed Generation: Toward a New
    Energy Paradigm," IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 52-64,
    March 2010.
    [3] 張建偉,「太陽能電池最大功率點追蹤之研究」,碩士學位論文,國立成功大
    學,2009。
    [4] 林正宏,「1kW 全橋相移式升壓型零電壓切換轉換器之研製」,碩士學位論
    文,國立臺灣科技大學,2010。
    [5] 黃廷熙,「高電壓輸出全橋相移式轉換器之研製」,碩士學位論文,國立臺灣
    科技大學,2007。
    [6] 劉志珉,「高電壓輸出相移式全橋轉換器之分析與設計」,碩士學位論文,國
    立臺灣科技大學,2006。
    [7] 張存安,「風力發電最大功率追蹤之並聯輸入串並聯輸出隔離型直流/直流轉
    換器研製」,碩士學位論文,國立臺灣科技大學,2012。
    [8] 蕭智文,「風力發電系統之並聯輸入串並聯輸出隔離型直流/直流轉換器」,
    碩士學位論文,國立臺灣科技大學,2013。
    [9] 吳志穎,「具輸入並聯/輸出串並聯隔離型直流/直流轉換器之風力發電系統」,
    碩士學位論文,國立臺灣科技大學,2014。
    [10] 林憲詮,「以粒子群演算法調度並聯輸入串並聯輸出直流/直流轉換器之功
    率」,碩士學位論文,國立臺灣科技大學,2015。
    [11] 林慰翰,「以粒子群演算法調度寬輸入電壓範圍並聯輸入串並聯輸出直流/直
    流隔離型轉換器之功率」,碩士學位論文,國立臺灣科技大學,2016。
    [12] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3rd ed. New
    York: Wiley, 2003.
    [13] 莊嘉琛,「太陽能工程-太陽能電池篇」,全華書局出版社,1997。
    [14] 吳財福、陳裕愷、張健軒,「太陽光電能供電能與照明系統綜論」,第二版,
    全華書局出版社,2007。
    [15] C. C. Hua and J. R. Lin, "Fully digital control of distributed photovoltaic power
    systems," in Proc. IEEE ISIE, 2001, vol.1, pp. 1-6.
    [16] K. S. M. Raza, H. Goto, H. J. Guo, and O. Ichinokura, “A novel algorithm for fast
    and efficient maximum power point tracking of wind energy conversion systems,”
    in Proc. IEEE ICEM, 2008, pp. 1-6.
    [17] K. S. M. Raza, H. Goto, H. J. Guo, and O. Ichinokura, “A novel speed-sensorless
    adaptive hill climbing algorithm for fast and efficient maximum power point
    tracking of wind energy conversion systems,” in Proc. IEEE ICSET, 2008, pp. 628-
    633.
    [18] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental
    analyses of photovoltaic systems with voltageand current-based maximum power-
    point tracking,” IEEE Trans. Power and Energy, vol. 17, pp. 514-522, 2002.
    [19] K. Harada and G. Zhao, “Controlled power interface between solar cells and AC
    source,” IEEE Trans. Power Electronics., vol. 8, pp. 654-662, 1993.
    [20] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic
    power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE
    Generation, Transmission and Distribution, vol. 142, pp. 59-64, 1995.
    [21] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of
    paralleling methods for power supply modules,” in Proc. IEEE PESC, 1999, vol.2,
    pp.901-908.
    [22] J. Cheng, J. Shi, and X. He, “A novel input-parallel output-parallel connected DC-
    DC converter modules with automatic sharing of currents,” in Proc. IEEE IPEMC,
    2012, pp. 1871-1876.
    [23] J. Shi, L. Zhou, and X. He, “Common-Duty-Ratio Control of Input-Parallel
    Output-Parallel (IPOP) Connected DC-DC Converter Modules With Automatic
    Sharing of Currents,” IEEE Trans. Power Electronics., vol. 27, no. 7, pp. 3277-
    3291, 2012.
    [24] S. N. Manias and G. Kostakis, “Modular DC-DC convertor for high-output voltage
    applications,” IEEE Electric Power Applications, vol. 140, no. 2, pp. 97-102, 1993.
    [25] L. Wang, “Input-Parallel and Output-Series Modular DC-DC Converters with One
    Common Filter,” in Proc. IEEE EUROCON, 2007, pp. 1398-1402.
    [26] Y. Zhao; W. Li, W. Li, and X. He, “An active clamp ZVT converter with input-
    parallel and output-series configuration,” in Proc. IEEE APEC, 2010, pp.1454-
    1459.
    [27] R. Giri, R. Ayyanar, and E. Ledezma, “Input-series and output-series connected
    modular DC-DC converters with active input voltage and output voltage sharing,”
    in Proc. IEEE APEC, 2004, vol. 3, pp. 1751-1756.
    [28] W. Chen, K. Zhuang, and X. Ruan, “A input-series andoutput-parallel-connected
    inverter system for high-input-voltage applications,” IEEE Trans. Power
    Electronics, vol. 24, no. 9, pp. 2127-2137, 2009.
    [29] Q. Lu, Z. Yang, S. Lin, S. Wang, and C. Wang, “Research on voltage sharing for
    input-series-output-series phase-shift full-bridge converters with common-duty-
    ratio,” in Proc. IEEE IECON, 2011, pp. 1548-1553.
    [30] J. Shi, J. Luo, and X. He, “Common-duty-ratio control of input-series output-
    parallel connected phase-shift full-bridge DC–DC converter modules,” IEEE
    Trans. Power Electronics., vol. 26, no. 11, pp. 3318-3329, 2011.
    [31] J. P. Lee, B. D. Min, T. J. Kim, D. W. Yoo, and J. Y. Yoo, “High efficient
    interleaved input-series-output-parallel-connected DC/DC converter for
    photovoltaic power conditioning system,” IEEE ECCE, 2009, pp. 327-329.
    [32] R. Ayyanar, R. Giri, and N. Mohan, “Active input-voltage and load-current sharing
    in input-series and output-parallel connected modular DC-DC converters using
    dynamic input-voltage reference scheme,” IEEE Trans. Power Electronics., vol.
    19, no. 6, pp. 1462-1473, 2004.
    [33] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int.
    Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948, 1995.
    [34] Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization,"
    Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, vol. 3,
    pp. 1950, 1999.
    [35] Y. Shi and R. Eberhart, "A modified particle swarm optimizer," 1998 IEEE
    International Conference on Evolutionary Computation Proceedings. IEEE World
    Congress on Computational Intelligence, pp. 69-73, 1998.
    [36] C. W. Reynolds, “Flocks, herds and schools: a distributed behavioral
    model,”Computer Graphics, 21(4):25-37, 1987.
    [37] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordinated bird
    flocks,” In S. Krasner, Ed, The Ubiquity of Chaos. AAAS Publications,
    Washington, DC, 1990.
    [38] G. Dashora and P. Awwal, "Adaptive particle swarm optimization employing
    fuzzy logic," 2016 International Conference on Recent Advances and Innovations
    in Engineering (ICRAIE), Jaipur, India, 2016, pp. 1-4.
    [39] A. Ebrahimi, V. Dehdeleh, A. Boroumandnia and V. Seydi, "Improved particle
    swarm optimization through orthogonal experimental design," 2017 2nd
    Conference on Swarm Intelligence and Evolutionary Computation (CSIEC),
    Kerman, Iran, 2017, pp. 153-158.
    [40] Guo Lei, "Application of improved particle swarm optimization algorithm based
    on average position in parameter optimization of hydraulic turbine
    governor," 2017 3rd International Conference on Control, Automation and
    Robotics (ICCAR), Nagoya, Japan, 2017, pp. 252-255.
    [41] P. Agarwalla and S. Mukhopadhyay, "Efficient coordinator guided particle swarm
    optimization for real-parameter optimization," 2017 7th International Conference
    on Cloud Computing, Data Science & Engineering - Confluence, Noida, India,
    2017, pp. 118-123.
    [42] L. Y. Chang, Y. N. Chung, K. H. Chao and J. J. Kao, "Modified particle swarm
    optimization method for MPPT in photovoltaic module arrays," 2016 IEEE 14th
    International Conference on Industrial Informatics (INDIN), Poitiers, 2016, pp.
    1256-1261.
    [43] K. T. K. Teo, P. Y. Lim, B. L. Chua, H. H. Goh and M. K. Tan, "Maximum Power
    Point Tracking of Partially Shaded Photovoltaic Arrays Using Particle Swarm
    Optimization," 2014 4th International Conference on Artificial Intelligence with
    Applications in Engineering and Technology, Kota Kinabalu, 2014, pp. 247-252.
    [44] D. C. Huynh, T. N. Nguyen, M. W. Dunnigan and M. A. Mueller, "Dynamic
    particle swarm optimization algorithm based maximum power point tracking of
    solar photovoltaic panels," 2013 IEEE International Symposium on Industrial
    Electronics, Taipei, Taiwan, 2013, pp. 1-6.
    [45] K. Ishaque and Z. Salam, "A Deterministic Particle Swarm Optimization
    Maximum Power Point Tracker for Photovoltaic System Under Partial Shading
    Condition," in IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp.
    3195-3206, Aug. 2013.
    [46] H. Nunes, J. Pombo, J. Fermeiro, S. Mariano and M. d. R. Calado, "Particle Swarm
    Optimization for photovoltaic model identification," 2017 International Young
    Engineers Forum (YEF-ECE), Costa da Caparica, Portugal, 2017, pp. 53-58.
    [47] 李維平、黃郁授、戴彰廷,「自適應慣性權重改良粒子群演算法之研究」中
    原大學資訊管理所,九十六年。
    [48] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethpathy, “Optimal
    renewable resources mix for distribution system energy lossminimization,”
    IEEETrans. Power Syst., vol. 25, no. 1, pp. 360-370,Feb. 2010.
    [49] Jen-Hao Teng, IEEE, Shang-Wen Luan, Dong-Jing Lee, and Yong-Qing Huang
    “Optimal Charging/Discharging Scheduling of Battery Storage Systems for
    Distribution Systems Interconnected With Sizeable PV Generation Systems.”
    IEEE Trans. On Power Systems, vol. 28, no. 2, May, 2013.
    [50] 張莉、馮大政、李宏,「求解整數非線性規劃結合正交雜交的離散 PSO 算法」
    (西安電子科技大學 a.雷達信號處理國家重點實驗室,b.數學系,西安 710071)。
    [51] 陳貴敏、賈建,「粒子群優化算法的慣性權重遞減策略研究」,西安交通大學
    報,第四十卷,第一期,2006 年。
    [52] Cheng, Y.I (2009) Least Square Estimation for Monotone Regression. Department
    of Mathematics, Tamkang University, master thesis.

    QR CODE