簡易檢索 / 詳目顯示

研究生: 劉元凱
Yuan-Kai Liu
論文名稱: 以電池模型為基礎之五階段定電流充電法最佳充電電流值搜尋
Searching for Optimal Charging Profile of Five-Stage Constant Current Charging Method Based on Battery Model
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 五階段定電流充電法粒子群演算法電池溫升
外文關鍵詞: Five-Stage Constant Current, Particle Swarm Optimization, Battery Temperature
相關次數: 點閱:264下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 充電方法對於鋰離子電池的性能與壽命有很大的影響,因此可以加快充電時間並提高充電效率之高等演算法顯的十分重要。根據文獻所提,五階段定電流充電法(FSCC)與傳統定電流定電壓(CC-CV)充電法相比,其具有充電時間較短且充電效率高等優點,因此如何決定FSCC充電法的充電設定之技術是非常重要的。
    本文採用粒子群演算法(PSO)尋找FSCC的最佳化充電電流設定,且所提方法只需使用鋰離子電池等效模型,因此不需進行多次耗時的實驗。此外,提出之策略考慮了充電時間與充電損失,而所提五階段定電流充電法與CC-CV相比,其平均溫升高4.798%,充電時間可縮短39.53%。

    關鍵字:五階段定電流充電法、粒子群演算法、電池溫升


    Charging method has a great impact on the performance and the longevity of lithium-ion batteries. Therefore, an advanced charging algorithm which can reduce the charging time and improve the charging efficiency becomes important. According to the literature, five-stage constant current (FSCC) charging method boasts the benefits such as short charging time and high charging efficiency comparing with conventional constant current-constant voltage (CC-CV) charging method. Hence, an efficient technique which can determine the setting values of the FSCC method is essential. In this thesis, particle swarm optimization (PSO) method is adopted to search for the optimal charging pattern of the FSCC charging method. The proposed approach uses only the equivalent model of the lithium-ion battery; hence, time-consuming experiments is not required. The presented strategy takes both the charging time and temperature rise into account. Comparing with CC-CV method, the average temperature rise increase of 4.798% and the charging time can be shortened by 39.53%.

    Keyword: Five-stage Constant Current, Particle Swarm Optimization, Battery Temperature

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2文獻探討 1 1.3研究動機及目的 3 1.4論文綱要 4 第二章 二次電池與二次電池充電技術介紹 5 2.1 電池專有相關名詞介紹 5 2.2 二次電池種類介紹 7 2.2.1 鉛酸電池 8 2.2.2 鎳氫電池 8 2.2.3 鋰離子電池 8 2.2.4 二次電池特性比較 9 2.3 本文選用之電池介紹 10 2.4 二次電池充電技術介紹 11 2.4.1定電壓充電法 11 2.4.2 定電流充電法 12 2.4.3 定電流定電壓充電法 13 2.4.4定電流-定電壓衍生型充電法 14 2.4.5 多階段定電流充電法 17 2.4.6 脈衝充電法 19 第三章 鋰離子電池等效模型與粒子群演算法介紹 22 3.1 鋰離子電池等效電路模型 22 3.1.1 理想電池等效模型 22 3.1.2 線性電池等效模型 23 3.1.3 戴維寧電池等效模型 24 3.2 多階段定電流充電法公式推導 24 3.3 粒子群演算法 28 3.3.1 粒子群演算法之原理 28 3.3.2 粒子群演算法之演化流程 29 第四章 最佳化多階段定電流充電演算法之介紹 33 4.1 鋰電池之交流阻抗分析 33 4.1.1 奈氏圖分析 34 4.1.2 交流阻抗之特性描述 37 4.1.3 交流阻抗分析之恆電位偵測(PEIS) 39 4.2 交流阻抗分析之實驗規劃 40 4.2.1 電池檢測 41 4.2.2 交流阻抗分析之實驗設定 42 4.2.3 交流阻抗之資料分析 47 4.3 最佳化多階段定電流充電演算法於MATLAB之實現 53 4.3.1 電池等效模型於粒子群演算法之應用 53 4.3.2 粒子適應值評估方式 57 第五章 實驗結果和數據 59 5.1 最佳化多階段定電流充電法之模擬結果 59 5.2 實測環境 63 5.3 實測結果 67 第六章 結論與未來展望 80 6.1 結論 80 6.2 未來展望 81 參考文獻 82

    [1]羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
    [2]陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [3]柯俊偉,「智慧型電池模組之可程控充電機設計」,台灣科技大學電機工程碩士論文,民國一零一年七月。
    [4]李易玹,「鋰離子電池新型充電方法之研究」,台灣科技大學電機工程碩士論文,民國一零二年七月。
    [5]劉俊良,「以模糊田口為基礎之新型電池充電機」,台灣科技大學電機工程博士論文,民國一零三年七月。
    [6]陳冠炷,「以剩餘容量與模糊溫度控制為基礎之鋰離子電池充電機設計與實現」,台灣科技大學電機工程碩士論文,民國一零三年七月。
    [7]連于瑄,「具CAN Bus通訊之鋰離子電池容量估測系統」,台灣科技大學電機工程碩士論文,民國一零五年七月。
    [8]許富昱,「基於模型預測控制之新型鋰離子電池充電演算法」,台灣科技大學電機工程碩士論文,民國一零六年七月。
    [9]K. M. Tsang, W. L. Chan, “Current sensorless quick charger for lithiumion batteries,” Energy Conversion and Management 52, 2011, pp.1593-1595.
    [10]P. H. L. Notten, J. H. G. Op het Veld, J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept”, Journal of power Source, vol. 145, no. 1, pp. 89-94, Feb 2005.
    [11]L. R. Chen, R. C. Hsu, and C. S. Liu, “A Design of A Grey-Predicted Lithium-Ion Battery Charge System,” IEEE Transactions on Industrial Electronics, vol. 51, no. 6, June 2004.
    [12]G.C. Hsieh, L.R. Chen, and K. S. Huang, “ Fuzzy controlled Lithium-Ion Battery Charge System with Active State of Charge Controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
    [13]L. R. Chen, “PLL-Based Battery Charge Circuit Topoloty,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
    [14]L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, ”Current pumped battery charger,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2482- 2488, Jun 2008.
    [15]L. R. Dung, and J. H. Yen, ” ILP-Based Algorithm for Lithium-Ion Battery Charging Profile,” IEEE International Symposium on Industrial Electronics (ISIE), pp. 2286 – 2291 , July 2010.
    [16]J.W. Huang, Y.H. Liu, S.C. Wang, Z.Z. Yang, “Fuzzy-Control-Based Five-Step Lithium-Ion Battery Charger,” IEEE International Conference on Power Electronics and Drive Systems (PEDS), 2009.
    [17]Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Trans. Ind. Electron., vol. 26, no. 2, pp. 654–661, 2011.
    [18]Y. H. Liu and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using Taguchi approach,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3963–3971, Dec. 2010.
    [19]Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for Li-ion batteries using ant colony system algorithm,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
    [20]A. B. Khan, V. L. Pham, T. T. Nguyen, and W. Choi, “Multistage Constant-Current Charging Method for Li-ion Batteries,” IEEE Transportation Electrification Conference and Expo (ITEC), 2016.
    [21]L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.398-405, Feb 2007.
    [22]L. R. Chen, “A design of Duty-Varied Voltage Pulse Charger for Improving Lithium-Ion Battery-Charging Response”, IEEE Trans. Ind. Electron., vol. 56, no. 2, pp.480-487, Feb. 2009.
    [23]B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes,” Journal of The Electrochemical Society, vol. 152, no. 4, pp. J33-J39, 2005.
    [24]B. K. Purushothama and U. Landau, “Rapid charging of Lithium-ion batteries using pulsed current,” Journal of The Electrochemical Society, vol. 153, no. 3, pp. A533-A542, 2006.
    [25]S. C. Wang and Y. H. Liu, “A PSO-Based Fuzzy-Controlled Searching for the Optimal Charge Pattern of Li-Ion Batteries,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2983–2993, May. 2015.
    [26]Z. Chen, B. Xia, C. C. Mi, and R. Xiong, “Loss-Minimization-Based Charging Strategy for Lithium-Ion Battery,” IEEE Transactions on Industrial Applications, vol. 51, no. 5, Sept. 2015.
    [27]孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
    [28]屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
    [29]陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。
    [30]桂長清,「動力電池」,北京:機械工業出版社,2012年6月。
    [31]Samsung Inc., “Lithium Ion Battery-ICR18650-26F,” Specification
    of product, ver. 1.0 (2009)
    [32]P.E. De Jongh, P.H.L. Notten, “Effect of Current Pulses on Lithium Intercalation Batteries,” Solid State Ionics 148, 2002, pp. 259-268.
    [33]J. Li, E. Murphy, J. Winnick, P. A. Kohl, “The Effects of Pulse Charging on Cycling Characteristics of Commercial Lithium-Ion Batteries,” Journal of Power Sources, 102 (2001), pp. 302-309
    [34]B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test system,” IEEE Trans. Instrum. Meas., vol. 52, no. 4, pp. 1087-1091, Aug. 2003.
    [35]Z. M. Salameh, M. A. Casacca, andW. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Trans. Energy Convers., vol. 7, no. 1, pp. 93-98, Mar. 1992.
    [36]劉峰其,「非線性鋰電池之充放電模型」,國立中央大學電機工程碩士論文,民國九十九年六月。
    [37]M. Dorigo and M. Birattari, "Swarm intelligence," Scholarpedia, vol. 2, p. 1462, 2007.
    [38]Kemedy, J., Eberhart, R. C., “A new optimizer using particle swarm theory,” Proceedings of the Sixth Intertional symposium on Micro machine and Human Science, Nagoya, Japan, pp. 39-43, 1995.
    [39]Kemedy, J., Eberhart, R. C., “Particle swarm optimization,” Proceedings of the 1995 IEEE International Conference on Networks, vol. 4, pp. 1942-1948, 1995.
    [40]鄭于珊,「Computational Intelligence in Smart Grid System:Application Cases of Particle Swarm Optimization in Renewable Energy System」,台灣科技大學電機工程博士論文,民國一零六年六月。
    [41]陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,台灣科技大學電機工程碩士論文,民國一零三年二月。
    [42]G. Nagasubramanian, E. P. Roth, and D. Ingersoll, “Electrical and electrochemical performance characteristics of small commercial Li-ion cells,” Battery Conference on Applications and Advances, pp. 91-96,1999

    無法下載圖示 全文公開日期 2023/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE