簡易檢索 / 詳目顯示

研究生: 王照錡
Chao-Chi Wang
論文名稱: 以開環歧化聚合反應合成含有降冰片烯基及咔唑基之高分子及其結構與性質之鑑定
Synthesis and Characterization of Polymers Based on Norbornene and Carbazole by Ring-Opening Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
王丞浩
Chen-Hao Wang
陳志堅
Jyh-Chien Chen
趙基揚
Chi-Yang Chao
堀江正樹
Masaki Horie
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 177
中文關鍵詞: 開環歧化聚合降冰片烯二甲醯亞胺環咔唑二烯自組裝奈米尺寸聚集體
外文關鍵詞: Ring-opening metathesis polymerization, norbornene-based derivatives, carbazolephanediene, self-assembly, nanoaggregates
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

開環歧化聚合為一種以釕基引發劑對高環張力單體進行聚合物合成的方式。該方法具有活性聚合的特徵,如合成出來的分子量分布狹窄、低缺陷、可控制末端基和可以控制聚合物分子量的優點,由於引發劑端持續保持反應性,也利於合成共聚聚合物。藉由單體與引發劑的比例變化可以合成出不同分子量和體積比鏈段的共聚聚合物,達到人為改變聚合物的微觀結構以及宏觀性質。
在本研究中,我們利用開環歧化聚合反應對高環張力的單體進行聚合,隨著單體側鏈的不同,如長烷基、三乙二醇基、部分氟烷基,所合成出來的共聚聚合物將具有性質非常不同的兩側鏈段。我們利用含有上述側鏈的降冰片烯二甲醯亞胺及環狀結構咔唑進行開環聚合並得到了各式新式的均聚物及共聚聚合物。本研究之重點為新聚合物之合成及微觀薄膜型態。並對結構導向的共聚聚合物進行形態觀察和光學性質測量,並考量在有機光子晶體或光伏元件中的潛在用途。我們合成了具有不同側鏈的一系列降冰片烯基及咔唑基之新單體和聚合物,並通過核磁共振儀,質譜和凝膠滲透色譜進行結構鑑定。均聚物和共聚聚合物是通過使用第三代格拉布引發劑對單體的開環歧化聚合來獲得。本研究證明了具有不同側鏈的聚合物的自組裝。在降冰片烯基聚合物中,含有氟化鏈的共聚物顯示出了一致的自組裝形態,被認為更容易在聚合物膜中具有自組裝結構。咔唑亞乙基聚合物的帶隙相對較低(2.64至2.79 eV)並且明顯受側鏈影響。由於三乙二醇鏈的高度無序和柔韌性,具有較高組成的三乙二醇取代的咔唑鏈段顯示出球狀奈米尺寸聚集體。


Polymers can be prepared by ring-opening metathesis polymerization (ROMP) of strained monomers, initiated by ruthenium carbene initiator. The resulting polymers exhibited low polydispersities, low defect, controllable end group fashion and the molecular weight of polymers can be tightly controlled by changing the monomer to initiator ratio. In the research proposal, we employ ring-opening metathesis polymerization of highly ring-strained monomers such as alkyl, semi-perfluoroalkyl or triethylene glycol substituted norbornene-based derivatives and carbazolephanediene undergoing ruthenium carbene complexes which can generate a series of well-defined homopolymers and block copolymers. In addition, the molecular weight and the volume ratio of the individual blocks of the polymers can be tailored by the ratio of the monomers employed. Herein, we will use block copolymers and their analogous homopolymers prepared in a predictable manner that exhibits self-assembled nanoscale morphology. The study will focus on polymer synthesis and films generated by spin coating from various solutions and examine the morphology and the optical property based on structure directing block copolymers which may lead to potential use in organic photonic crystals or a photovoltaic device.
The series of new monomers and polymers with different flexible chains have been synthesized and fully characterized by NMR, mass spectroscopy and gel permeation chromatography. The homopolymers and block copolymers can be obtained by the ring-opening metathesis polymerization of their corresponding monomers and comonomers using third generation Grubbs initiator. The self-assembly of polymers with the different side chains have been reported in this research. For norbornene-base polymers, fluorinated chains are thought to be easier to have self-assembled structure in polymer films due to the inimitable aggregation property. The block copolymer contains both fluorinated block and alkyl block shows different size particles with different volume ratio. A series full conjugated polymers were synthesis by carbazolephanediene. The monomers were synthesized by McMurry coupling in few steps. The bandgap of the carbazolevinylene base polymers is relatively low (2.64 to 2.79 eV) and is strongly dependent on the side chains. The carbazolevinylene block copolymers with a higher composition of the triethylene glycol substituted carbazolevinylene block showed sphere-like nanoaggregates due to the highly disorder and flexibility of the triethylene glycol chains. This work demonstrated well control of the polymer microstructures with specific nanoaggregates in solid state.

Table of Content Abstract i 摘要 ii Table of Content iii List of Figures vi List of Tables ix List of Schemes x Acknowledgements xii Chapter 1. Introduction 1 1.1 Introduction and Aims 4 1.2 Electrical and optical properties of polymers 6 1.2.1 Band theory 6 1.2.2 Excitations and luminescence in conjugated polymers 7 1.2.3 Photonic crystal 9 1.3 Self-assembly of block copolymers 13 1.4 Ring-opening metathesis polymerization 19 1.5 Literature review 24 1.5.1 Polymers consist of all conjugated monomer 24 1.5.2 Polymers consist of all nonconjugated monomer 27 1.5.3 Polymers consist of conjugated block and nonconjugated block 29 References 34 Chapter 2. Synthesis and Characterization of Polymers Based on Norbornene Derivatives 37 2.1 Introduction 39 2.1.1 Introduction 39 2.1.2 Photonic crystal 41 2.1.3 Self-assembly of brush copolymers 43 2.2 Synthesis and characterizations of norbornene based monomers 45 2.3 Synthesis and characterizations of norbornene based polymers via ROMP 52 2.3.1 Polymerization and characterization of homo-polymers 52 2.3.2 Polymerization and characterization of block copolymers 55 2.3.3 Synthesis of fluorine-containing copolymer 61 2.4 Morphology of polymer films 64 2.5 Thermal properties 68 2.6 Experimental section 69 2.6.1 Synthesis of cis-5-norbornene-exo-2,3-dicarboxylic anhydride (1) 70 2.6.2 Synthesis of cis-5-norbornene-exo-2,3-dicarboxylic imide (2) 70 2.6.3 Synthesis of compound 3 71 2.6.4 Synthesis of compound 4 71 2.6.5 Synthesis of N-decyl-cis-5-norbornene-exo-2,3-dicarboxylic imide (M1) 72 2.6.6 Synthesis of N- triethylene glycol monomethyl ether-cis-5-norbornene-exo-2,3-dicarboxylic imide (M2) 72 2.6.7 Synthesis of M3 73 2.6.8 Synthesis of homopolymers (P1 and P2) 74 2.6.9 Synthesis of block copolymers P3 74 2.6.10 Synthesis of block copolymers P4a-P4e 75 2.6.11 Synthesis of block copolymers P5 76 References 77 Chapter 3. Preparation and Characterization of Conjugated Polymers Derived from Carbazolevinylenes 79 3.1 Introduction 81 3.2 Synthetic routes of monomers 85 3.2.1 Octyl substituted carbazolephanediene 87 3.2.2 Triethylene glycol substituted carbazolephanediene 90 3.3 Mechanism of ROMP 94 3.4 Stoichiometry chemistry 96 3.5 Preparation and characterization of carbazolevinylene polymers 100 3.5.1 Polymerization and characterization of octyl or TEG substituted carbazolevinylene homopolymers 100 3.5.2 Polymerization and characterization of TEG substituted carbazolevinylene homopolymers 103 3.5.3 Polymerization and characterization of block copolymers 105 3.6 Morphology of polymer films 111 3.7 Optical properties of polymers P1-P5 116 3.8 Electrochemical properties of polymers 122 3.9 Experimental section 126 3.9.1 Synthesis 9-octyl-9H-carbazole (1a) 127 3.9.2.Synthesis of 3,6-dibromo-9-octyl-9H-carbazole (2a) 127 3.9.3 Synthesis of 9-octyl-9H-carbazole-3,6-dicarbaldehyde (3a) 128 3.9.4 Synthesis of dioctyl substituted carbazolephanediene (M1) 129 3.9.5 Synthesis of triethylene glycol 4-methylbenzenesulfonate (4) 130 3.9.6 Synthesis of 9-triethylene glycol-9H-carbazole (1b) 130 3.9.7 Synthesis of 3,6-dibromo-9-triethylene glycol-9H-carbazole (2b) 131 3.9.8 Synthesis of 9-triethylene glycol-9H-carbazole-3,6-dicarbaldehyde (3b) 132 3.9.9 Synthesis of di(triethylene glycol) substituted carbazolephanediene (M2) 133 3.9.10 Synthesis of 1-(2-methoxyvinyl)-4-methylbenzene (5) 133 3.9.11 Synthesis of P1 134 3.9.12 Synthesis of P2 135 3.9.13 Synthesis of P3 135 3.9.14 Synthesis of P4 and P5 136 References 137 Appendix 139 Chapter 4. Preparation and Characterization of Carbazolephanetetraenes 143 4.1 Introduction 145 4.2 Synthetic routes of carbazolephanetetraene 149 4.3 Optical properties of carbazolephanetetraene 154 4.4 Experimental section 157 4.4.1 Synthesis of 4,4'-dibromo-2-nitro-1,1'-biphenyl (1) 157 4.4.2 Synthesis of 2,7-dibromo-9H-carbazole (2) 158 4.4.3 Synthesis of 2,7-dibromo-9-octyl-9H-carbazole (3) 158 4.4.4 Synthesis of 9-octyl-9H-carbazole-2,7-dicarbaldehyde (4) 159 4.4.5 Synthesis of compound 5 160 References 161 Appendix 162 Chapter 5. Conclusions 161   List of Figure Chapter 1. Figure 1. Structures of polyethylene, polypropylene, polynorbornene, and the polymer (plastic) applications. 3 Figure 2. Band theory diagram for insulators, semiconductors and conductors. 5 Figure 3. The calculated energy level of oligothiophene with n = 1 to 4 and polythiophene. 6 Figure 4. A Jablonski diagram showing excitation and relaxation in a typical emissive molecule: (a) absorption; (b) internal conversion; (c) fluorescence; (d) intersystem crossing; (e) phosphorescence. 7 Figure 5. The concept of the selectivity of the light reflection of difference d space. 9 Figure 6. The photonic crystal structures in different dimensions. 10 Figure 7. The photonic crystal structures of creatures in nature. 11 Figure 8. The phase separation of block copolymers, PS-b-PAA with different molar ratios of each block. 13 Figure 9. Structures of self-assembly related to different χN and volume fraction. 15 Figure 10. The AFM images with different size ratio of host polymer and guest and the extension property of the relation with the side chain and main chain size of polymer (right). 16 Figure 11. (a) The black lines represent polymer backbone; blue lines and red lines represent pendent PEG and cinnamoyl groups, respectively. (b) AFM images of nanoparticles. 17 Figure 12. The series of Grubbs catalyst. 18 Figure 13. The most common monomers used in ROMP. 21 Figure 14. The routes for ROMP using the cyclophanediene as monomer and (a) the AFM image for dialkoxy-substituted homopolymer (b) and tetraalkoxy-substituted homopolymer, (c) tetraalkoxy-substituted and dialkoxy-substituted block copolymer. 22 Figure 15. The spherical conformation can be obtained only from the alternating copolymers. 23 Figure 16. (a) STM images of polymer casting on HOPG. (b) Polymerization of monomer on HOPG directly. (c) Approximate size of the possible chemical structures. 25 Figure 17. One-pot synthesis routes of a bottlebrush polymer with PLA side chains, (A) shows the GPC peak with different monomer/initiator ratio and (B) the Mn versus monomer/initiator ratio. 26 Figure 18. The polymer films show the color change with different salt and concentrates. 27 Figure 19. The self-Assembled micelles of polymers with the proposed method of opening micelles to obtain enhanced electrochemiluminescence response. 28 Figure 20. General trends in the solution structure of rod–coil block copolymers. 29 Figure 21. The TEM image of micelles obtained from the self-assembly of polymer following micellization. (a) Micellization with THF. (b) Micellization with acetone. (c) Further merging of micelles leads to larger aggregates (micellization with water). 30 Figure 22. TEM of PPV/POX blend and PPV-b-POX block copolymer. (a) The PPV/POX blend (1:1 weight ratio) shows macrophase separation at the micron length scale. (b) PPV-b-OX with annealing at 180 ° C for 22 h. 31 Figure 23. (a) The illustration of using block copolymer in OLED. (b) The block copolymer demonstrates superior external quantum efficiency, (c) brightness as a function of current density, and (d) I-V characteristics than comparable pure homopolymer PPV and PPV/POX blends. 32 Chapter 2. Figure 1. Synthetic approaches toward brush polymers. .40 Figure 2. The process form monomer synthesis to photonic crystal form by self-assembly. 41 Figure 3. The vials with different ratio mix with two kinds of copolymer and show the reflection of full color. 42 Figure 4. The interfacial curvature affect self-assembly of linear (top) and brush (bottom) block copolymers. 44 Figure 5. 1H and 1H-1H COSY NMR spectra of compound 1. 46 Figure 6. 1H NMR spectrum of compound 2. 47 Figure 7. 1H NMR spectra of compound 3 (left) and compound 4 (right). 49 Figure 8. 1H NMR spectra of M1. 50 Figure 9. 1H NMR spectra of M2. 51 Figure 10. 1H NMR spectra of M3. 51 Figure 11. The 1H NMR spectrum of P1. 53 Figure 12. The 1H NMR spectrum of P2. 55 Figure 13. The 1H NMR spectrum of p3. 57 Figure 14. The 1H NMR spectrum of p4. 58 Figure 15. The 1H NMR spectrum of p5. 60 Figure 16. The monomer ratios were shown in 1H NMR spectra. 61 Figure 17. APC trace of the polymer signal versus retention time. 62 Figure 18. Polymers P1-P5 (from left to right) drop-casting in chloroform solution. 64 Figure 19. AFM images of P1-P5 in different solvent conditions, (a) 50mg/2mL CHCl3 (b) 50mg/1mL CHCl3 added 1 mL toluene, (c) 50mg/8mL CHCl3 and (d) 50mg/4mL CHCl3 added 4mL toluene. 66 Figure 20. TGA and DSC diagram of P4a-P4e. 68 Chapter 3. Figure 1. Common all-conjugated polymers. 81 Figure 2. Carbazole containing molecules and polymers. 82 Figure 3. Various cyclophanedienes produced by Stevens-rearrangement and Hofmnann elimination. 86 Figure 4. 1H NMR spectrum of M1 in CDCl3. 89 Figure 5. Solid-state structures and packing diagram of M1. Thermal ellipsoids are set at 50% probability. 90 Figure 6. 1H NMR spectrum of M2 in CDCl3. 92 Figure 7. Solid-state structures and packing diagram of M2. Thermal ellipsoids are set at 50% probability. 93 Figure 8. 1H NMR spectrum of 7ct in CD2Cl2. 97 Figure 9. 1H NMR spectrum of 7tt in CD2Cl2. 99 Figure 10. 1H NMR spectrum of homopolymer P1. 102 Figure 11. GPC curve (left) and result (right) with different polymerization times. 103 Figure 12. 1H NMR spectrum of homopolymer P2. 104 Figure 13. 2D 1H-1H COSY NMR spectrum of homopolymer P2. 105 Figure 14. 1H NMR spectrum of block copolymer P3. 108 Figure 15. 1H NMR spectrum of block copolymer P4. 108 Figure 16. 1H NMR spectrum of block copolymer P5. 109 Figure 17. Polymers P1-P5 (from left to right) dissolve in 1,4-dioxane (left) and toluene (right). 111 Figure 18. AFM height images and phase images of P2-P5 (from left to right) (drop-casting from 1,4-dioxane solution). 112 Figure 19. AFM height images and phase images of P2-P5 (from left to right) (spin-casting from 1,4-dioxane solution). 112 Figure 20. AFM height images and phase images of P1-P5 (from left to right) (drop-casting from toluene solution). 113 Figure 21. AFM height images and phase images of P1-P5 (from left to right) (spin-casting from toluene solution). 113 Figure 22. AFM images (2μm x 2μm) of polymer thin films (a) P1, (b) P2, (c) P3, (d) P4 and (e) P5 and a phase image (500 nm x 500 nm) of a polymer thin film (f) P5 deposited from a polymer solution in 1,2-dichloroethane with a concentration of 1 mg/mL. 115 Figure 23. UV/vis absorption (left) and photoluminescence (right) spectra of P1 to P5. 116 Figure 24. Solid-state UV/vis absorption (left) and photoluminescence (right) spectra of P1 to P5. 117 Figure 25. UV/vis absorption (left) and photoluminescence (right) spectra of P1 to P3 under UV lamp irradiation at a wavelength of 365 nm. 118 Figure 26. UV/vis absorption (left) and photoluminescence (right) spectra of P1 to P5 in different THF/H2O mixture. 150 Figure 27. Cyclic voltammogram of P1-P5. 123 Figure 28. Energy band gap diagram of P1-P5. 124 Figure A1.Absorption and fluorescence spectra of UV lamp irradiation of M1 (left) and M2 (right). 139 Figure A2. The atom label of M1 (d19030). 139 Figure A3. The atom label of M2 (d19613). 140 Chapter 4. Figure 1. (a) UV/vis spectrum and (b) photoluminescence spectrum of 4,7-bis(thienyl)-2,1,3-benzothiadiazoles-base structure. 146 Figure 2. Synthesis of poly(thienylenevinylene) by ROMP. 147 Figure 3. 1H NMR spectrum of compound 5. 151 Figure 4. 2D 1H-1H COSY NMR spectrum of compound 5. 152 Figure 5. Solid-state structures and packing diagram of compound 5. 153 Figure 6. UV/vis absorption and photoluminescence spectra of compound 5 with concentration of 10-6 M in dichloromethane under UV lamp irradiation at a wavelength of 365 nm for a period of time. 154 Figure 7. UV/vis absorption and photoluminescence spectra of compound 5 with concentration of 10-6 M in THF under UV lamp irradiation at a wavelength of 365 nm for a period of time. 155 Figure A1. The atom label of compound 5 (d19320a). 162 List of Table Chapter 1. Table 1. Functional group tolerance of transition metal olefin metathesis catalysts. 19 Chapter 2. Table 1. Results of the ROMP of different monomers. 60 Table 2. Molecular weight measurement results of copolymers. 63 Table 3. The particle size of different copolymers with different concentrate condition. 67 Chapter 3. Table 1. Reaction time, equivalents of M1 and M2, molecular weights, polydispersity index and yields of polymers P1-P5. 110 Table 2. UV-vis, photoluminescence (PL), photoluminescence quantum yields and optical band gap data for P1-P5. 119 Table 3. Electrochemical properties measured in film by cyclic voltammetry. 125 Table A1. Crystal data and structure refinement for d19030. 139 Table A2. Crystal data and structure refinement for d19613. 140 Chapter 4. Table A1. Crystal data and structure refinement for d19320a. 115 List of Scheme Chapter 1. Scheme 1. The initiation, propagation and termination of ROMP. 19 Scheme 2. The mechanism of the ROMP. 21 Chapter 2. Scheme 1. The mechanism of Diels-Alder reaction. 45 Scheme 2. The synthetic routes to dicarboximide norbornenes, 1-bromo-2-(2-(2-methoxyethoxy)ethoxy)ethane and 10-bromo-1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-heptadecafluorodecane. 48 Scheme 3. The synthetic routes to octyl, methoxyethoxyethoxyethyl, methylheptyl and heptadecafluorodecyl substituted dicarboximide norbornene. 51 Scheme 4. The synthetic routes for ROMP of M1 and M2. 52 Scheme 5. The synthetic routes for block copolymer P3-P5 via ROMP. 56 Chapter 3. Scheme 1. Carbazolevinylene containing polymers prepared by (a) Heck coupling and (b) Wittig polycondenzation. 83 Scheme 2. The synthetic routes to cyclophanediene by ring closed, Stevens rearrangement, oxidation and Hofmnann elimination. 85 Scheme 3. The mechanisms of McMurry coupling. 86 Scheme 4. Synthetic routes to M1. 88 Scheme 5. Synthetic routes to M2. 91 Scheme 6. The mechanism of ROMP for cyclocarbazolediene. 95 Scheme 7. Ring-opening metathesis reaction of M1 using 1:1 monomer to initiator ratio. 96 Scheme 8. P1 and P2 generated by ROMP. 101 Scheme 9. Synthetic route to block copolymers P3-P5. 107 Chapter 4. Scheme 1. The synthetic routes to fluorenophanetetraene. 146 Scheme 2. Synthetic routes to compound 5. 150

Chapter 1.

[1] J. M. Shaw, P. F. Seidler, IBM J. Res. Dev. 2001, 45, 3.
[2] G. Roland, J. Jenna R. Jambeck, L. K. Lavender, Sci. Adv. 2017, 3, 1.
[3] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 16, 578.
[4] G. Hadziioannou, G. G. Malliaras, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, 2006.
[5] J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971. [6] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
[7] Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature 1999, 397, 414.
[8] P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, R. H. Friend, Nature 2000, 404, 481.
[9] C. Fenzl, T Hirsch, O. S. Wolfbeis, Angew. Chem. Int. Ed. 2014, 53, 3318.
[10] E. Yablonovitch, Phys. Rev. Lett. 1987, 58, 2059.
[11] S. John, Phys. Rev. Lett. 1987, 58, 2486.
[12] I. B. Burgess, M. Loňcar, J. Aizenberg, J. Mater. Chem. C 2013, 1, 6075.
[13] W. Hong, Y. Chen, X. Feng, Y. Yan, X. Hu, B. Zhao, F. Zhang, D. Zhang, Z. Xu, Y. Lai, Chem. Commun. 2013, 49, 8229.
[14] S. A. Asher, J. Holtz, L. Liu, Z. Wu, J. Am. Chem. Soc. 1994, 116, 4997.
[15] X. Wang, O. S. Wolfbeis, R. J. Meier, Chem. Soc. Rev. 2013, 42,7834.
[16] Y. Zhao, Y.-N. Zhang, Q. Wang, Sens. Actuators B 2011, 160, 1288.
[17] J. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492.
[18] M. Giese, L. K. Blusch, M. K. Khan, W. Y. Hamad, M. J. MacLachlan, Angew.
Chem. Int. Ed. 2014, 53, 1.
[19] R. J. Macfarlane, B. Kim, B. Lee, R. A. Weitekamp, C. M. Bates, S. F. Lee, A. B. Chang, K. T. Delaney, G. H. Fredrickson, H. A. Atwater, R. H. Grubbs, J. Am. Chem. Soc. 2014, 136, 17374.
[20] J. A. Kelly, A. M. Shukaliak, C. C. Y. Cheung, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2013, 125, 9080.
[21] H. Fudouzi, Sci. Technol. Adv. Mater. 2011, 12, 1.
[22] H. Wang, K. Q. Zhang, Sensors, 2013, 13, 4192.
[23] B. R. Sveinbjornsson, G. M. Miyake, A. El-Batta, R. H. Grubbs, ACS Macro Lett. 2014, 3, 26.
[24] R. Verduzco, X. Li, S. L. Pesek, G. E. Stein, Chem. Soc. Rev. 2015, 44, 2405.
[25] P. Alexandridis, B. Lindman, Amphiphilic Block Copolymers: Self-Assembly and Applications, Elsevier, Amsterdam, 2000.
[26] N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem. 1999, 77, 1311.
[27] F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32.
[28] J. Y. L. Boudec, D. McDonald, J. Mundinger, Fourth International Conference on the Quantitative Evaluation of Systems, 2007.
[29] F. Baccelli, F. I. Karpelevich, M. Y. Kelbert, A. A. Puhalskii, A. N. Rybko, Y. M. Suhov, J. Statistical Phys. 1992, 66, 803.
[30] J. M. Lasry, P. L. Lions, Japan. J. Math. 2007, 2, 229.
[31] M. W. Matsen, M. Schick, Phys. Rev. Lett. 1994, 72, 2660.
[32] F. C. Sun, A. V. Dobrynin, D. Shirvanyants, H. Lee, K. Matyjaszewski, G. J. Rubinstein, M. Rubinstein, S.S. Sheiko, Phys. Rev. Lett. 2007, 99, 137801.
[33] A. Noro, Y. Tomita, Y. Shinohara, Y. Sageshima, J. J. Walish, Y. Matsushita, E. L. Thomas, Macromolecules 2014, 47, 4103.
[34] J. B. Matson, R. H. Grubbs, J. Am. Chem. Soc. 2008, 130, 6731.
[35] P. Y. R. Schleyer, J. E. william, K. R. Blanchard, J. Am. Chem. Soc. 1970, 92, 2378. [36] C. W. Bielawski, R. H. Grubbs, Angew. Chem. Int. Ed. 2000, 39, 2903.
[37] C. W. Bielawski, R. H. Grubbs, Macromolecules 2001, 34, 8838.
[38] C Pariya, K. N. Jayaprakash, A Sarkar. Coord. Chem. Rev. 1998, 168, 1.
[39] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 1972, 94, 2538.
[40] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1.
[41] Z. You, W. Song, S. Zhang, O. Jin, M. Xie, J. Polym. Sci. part A: Polym. Chem. 2013, 51, 4786.
[42] H. Pei, W. Li, Y. Liu, D. Wang, J. Wang, J. Shi, S. Cao, Polymer 2012, 53, 138.
[43] S.T. Nguyen, L.K. Johnson, R.H. Grubbs, J.W. Ziller, J. Am. Chem. Soc. 1992, 114,
3974.
[44] C. Y. Yu, J. W. Kingsley, D. G. Lidzey, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797.
[45] T. Adachi, L. Tong, J. Kuwabara, T. Kanbara, A. Saeki, S. Seki, Y. Yamamoto, J. Am. Chem. Soc. 2013, 135, 870.
[46] S.-T. Chiu, H.-Y Chiang, Y.-J. Lin, Y.-Y. Lu, H. Tanaka, T. Hosokai. M. Horie, Chem. Commun. 2018, 54, 5546.
[47] S. C. Radzinski, J. C. Foster, J. B. Matson, Macromol. Rapid Commun. 2016, 37, 616.
[48] Y. Xia, B. D. Olsen, J. A. Kornfield, R. H. Grubbs, J. Am. Chem. Soc. 2009, 131, 18525.
[49] H. Saito, Y. Takeoka, M. Watanabe, Chem. Commun. 2003, 17, 2126.
[50] U. M. Tefashe, K. L. Metera, H. F. Sleiman, J. Mauzeroll, Langmuir 2013, 29,
12866.
[51] B.D. Olsen, R.A. Segalman, Mater. Sci. and Engin. 2008, 62, 37.
[52] F. Menk, S. Shin, K. O. Kim, M. Scherer, D. Gehrig, F. Laquai, T. L. Choi, R. Zentel, Macromolecular 2016, 49, 2085.
[53] Y. Tao, B. Ma, R. A. Segalman, Macromolecules 2008, 41, 7152.

Chapter 2.

[1] S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewski, Prog. Polym. Sci. 2008, 33, 759.
[2] H. Gao, K. Matyjaszewski, J. Am. Chem. Soc. 2007, 129, 6633.
[3] C. Cheng, K. Qi, E. Khoshdel, K. L. Wooley, J. Am. Chem. Soc. 2006, 128, 6808.
[4] K. Yamada, M. Miyazaki, K. Ohno, T. Fukuda, M. Minoda, Macromolecules 1999,
32, 290.
[5] G. M. Miyake, V. A. Piunova, R. A. Weitekamp, R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 14249.
[6] I. Gadwal, J. Rao, J. Baettig, A. Khan, Macromolecules, 2014, 47, 35.
[7] G. M. Miyake, V. A. Piunova, R. A. Weitekamp, R. H. Grubbs, Angew. Chem. Int. Ed. 2012, 51, 11246.
[8] S. Peng, B. Bhushan, RSC Advances 2012, 2, 8557.
[9] H. Iwawaki, O. Urakawa, T. Inoue, Y. Nakamura, Macromolecules 2012, 45, 4801.
[10] H. Iwawaki, T. Inoue, Y. Nakamura, Macromolecules 2011, 44, 5414.
[11] S. J. Dalsin, M. A. Hillmyer, F. S. Bates, ACS Macro Lett. 2014, 3, 423.
[12] M, Hu, Y. Xia, G. B. McKenna, J. A. Kornfield, R. H. Grubbs, Macromolecules
2011, 44, 6935.
[13] S. Lee, N. D. Spencer, Science 2008, 319, 575.
[14] X. Li, S. L. Prukop, S. L. Biswal, R. Verduzco, Macromolecules 2012, 45, 7118.
[15] J. Bolton, T. S. Bailey, J. Rzayev, Nano Lett. 2011, 11, 998.
[16] T. Pakula, Y. Zhang, K. Matyjaszewski, H.-I. Lee, H. Boerner, S. Qin, G. C. Berry, Polymer 2006, 47, 7198.
[17] G. M. Miyake, R. A. Weitekamp, V. A. Piunova, R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 14249.
[18] B. R. Sveinbjörnsson, R. A. Weitekamp, G. M. Miyake, Y. Xia, H. A. Atwater, R. H. Grubbs, P. Natl. Acad. Sci. USA 2012, 109, 14332. [19] A. Benedicto, B. M. Novack, R. H. Grubbs, Macromolecules 1992, 25, 5893.

Chapter 3.

[1] A. Venkateswararao, K. R. J. Thomas, C.-P. Lee, C.-T. Li, K.-C. Ho, ACS Appl. Mater. Interfaces 2014, 6, 2528.
[2] L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L.Yu, Chem. Rev. 2015, 115, 12666.
[3] H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
[4] S. Ku, C. D. Liman, D. J. Burke, N. D. Treat, J. E. Cochran, E. Amir, L. A. Perez, M. L. Chabinyc, C. J. Hawker, Macromolecules 2011, 44, 9533.
[5] K. Karon, M. Lapkowski, J. Solid State Electrochem. 2015, 19, 2601.
[6] M. Reig, G. Bagdziunas, D. Volyniuk, J. V. G. D. Velasco, Phys. Chem. Chem.
Phys. 2017, 19, 6721.
[7] Z.-B. Zhang, M. Fujiki, H.-Z. Tang, M. Motonaga, K. Torimitsu,
Macromolecules 2002, 35, 1988.
[8] C. Doyranlı, F. B. Koyuncu, eXPRESS Polymer Letters 2016, 10, 762-770.
[9] H. Hoegl, J. Phys. Chem. 1957, 69, 755.
[10] A. Upadhyay, Karpagam S, J. Fluoresc. 2016, 26, 439.
[11] A. Zhang , H. Von Seggern, K. Pakbaz, B. Kraabel, K. H. W. Schmidt, A.J.
Heeger. Synth. Met. 1994, 62, 35.
[12] P. D. Vellis, J. A. Mikroyannidis, M. J. Cho, D. H. Choi, J. Polym. Sci. A 2008, 46, 5592.
[13] T. Ahn, S.-Y. Song, H.-K. Shim, Macromolecules 2000, 33, 6764.
[14] X. Li, X. Zhang, W. Li, Y. Wang, T. Liu, B. Zhang, W. Yang, J. Mater. Chem.
2011, 21, 3916.
[15] S Grigalevicius, M.-H. Tsai, J. V. Grazulevicius, C.-C. Wu, J. Photochem. Photobiol. A: Chem. 2005, 174, 125.
[16] R. H. Grubbs, Macromolecules 2017, 50, 6979. [17] C.-Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797.
[18] C.-Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chem. Eur. J. 2011, 17, 6991.
[19] C.-Y. Yu, Y.-C. Lai, RSC Adv. 2018, 8, 19341.
[20] C.-Y. Yu, Y.-C. Chena, C.-C. Wang, New J. Chem. 2017, 41, 14116.
[21] C.-Y. Yu, S.-H. Yu, S.-H. Wen, C.-C.Wang, Tetrahedron Lett. 2017, 58, 3854.
[22] S.-W. Chang, M. Horie, Chem. Commun. 2015, 51, 9113.
[23] J. F. Ambrose, R. F. Nelson, J. Electrochem. Soc. 1968, 11, 1159.
[24] P. Marrec, C. Dano, N. Gueguen-Simonet, J. Simonet, Synth. Met. 1997, 89, 171.
[25] B. W. D’Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov, M. E. Thompson, Org. Electron. 2005, 6, 11.

Chapter 4.

[1] X.-F. Wang, H. Tamiak, Energy Environ. Sci. 2011, 4, 1788.
[2] S. Yamago, E. Kayahara, T. Iwamoto, Chem. Rec. 2014, 14, 84.
[3] N. Aratani, D. Kim, A. Osuka, Acc. Chem. Res. 2009, 42, 1922.
[4] Y.-H. Lai, P. Chen, J. Org. Chem. 1989, 54, 4586.
[5] K. Ayub, R. H. Mitchell, J. Org. Chem. 2014, 79, 664.
[6] T. Otsubo, V. Boekelheide, Tetrahedron Lett. 1975, 16, 3881.
[7] C.-Y. Yu, Y.-C. Chen, C.-C. Wang, New J. Chem. 2017, 41, 14116.
[8] A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
[9] T. Kietzke, D. A. M. Egbe, H.-H. Horhold, D. Neher, Macromolecules 2006, 39,
4018.
[10] C.-W. Chu, M. Horie, Asian J. Org. Chem. 2013, 2, 838.
[11] M. Horie, I-W. Shen, S. M. Tuladhar, H. Leventis, S. A. Haque, J. Nelson, B. R. Saunders, M. L. Turner, Polymer 2010, 51, 1541.
[12] U. Geissler, M. L. Hallensleben, A. Rienecker, N. Rohde, Polym. Adv. Technol. 1997, 8, 87.

無法下載圖示 全文公開日期 2024/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE