簡易檢索 / 詳目顯示

研究生: 張家瑜
Jia-Yu Chang
論文名稱: 以常壓電漿噴射束製備氧化釓摻雜氧化鈰固態電解質材料
Preparation of Gadolinia-doped Ceria Solid Electrolyte Materials by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 韋文誠
Wen-Cheng Wei
楊永欽
Yung-Chin Yang
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 156
中文關鍵詞: 中溫型固態氧化物燃料電池氧化釓摻雜氧化鈰氧化釔安定氧化鋯常壓電漿噴射束複合式固態電解質
外文關鍵詞: Intermediate Temperature Solid Oxide Fuel Cell, Gadolinia-doped Ceria, Yttria-stabilized Zirconia, Atmospheric Pressure Plasma Jet, Composite Solid Electrolyte
相關次數: 點閱:351下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化釓摻雜氧化鈰(Gd2O3-Doped CeO2, GDC)固態電解質材料被認為最有潛力可取代傳統氧化釔安定氧化鋯(Yttria-Stabilized Zirconia, YSZ)電解質並應用於中溫型固態氧化物燃料電池(Intermediate Temperature-SOFC, IT-SOFC)中。由於在常壓下操作,不需昂貴之真空設備,設備簡單,成本低廉且製程速率快,本研究將發展一新穎常壓電漿噴射束(Atmospheric Pressure Plasma Jet, APPJ)製程,並以硝酸鈰與硝酸釓混合溶液作為前驅物製備GDC電解質材料,以期應用於SOFC之固態電解質材料。
本研究之架構主要分為二大部分討論,第一部分利用常壓電漿噴射束分別通入不同之載氣氣體Ar及O2製備GDC粉體,製備後之粉體材料性質分析分別以X光繞射儀(XRD)分析其結晶結構及粉體尺寸,拉曼光譜儀(Raman)分析結晶相,掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察其表面形貌與粉體尺寸,並利用X光螢光分析儀(XRF)確認GDC之化學組成,最後以X光光電子能譜儀(XPS)進一步研究其化學鍵結結構,以探討載氣氣體之效應,結果顯示經由常壓電漿噴射束確實能於短時間內製備出10GDC立方相螢石結構之粉體,而通入Ar載氣氣體製備之GDC粉體有部分還原之情形(Ce4+Ce3+);通入O2載氣氣體製備之GDC粉體會產生以Ce4+為主之結構,利於離子傳導率的提升。最後利用前驅物與霧化液滴之粒徑關係及電漿內部之化學反應推測GDC粉體之顆粒成形機制。
基於第一部分之結果,再以常壓電漿噴射束沉積GDC薄膜,分別通入Ar載氣氣體及O2載氣氣體,以不同燒結溫度進行熱處理,利用XRD及Raman分析其結晶結構,SEM觀察其表面形貌與薄膜品質,XPS進一步研究其化學鍵結結構,最後以較佳之參數進行GDC薄膜之電性量測及橫截面影像之觀察,並應用於SOFC之複合式固態電解質材料上。結果顯示高溫燒結製程將造成GDC與YSZ之固溶相產生,進而使得導電度開始下降,此部分之最佳製程為通入O2載氣氣體製備之GDC薄膜於燒結溫度1400°C時可獲得最佳之導電度(1.486×10-2 S/cm,量測溫度為750°C),其值高於8YSZ固態電解質(8.759×10-3 S/cm,量測溫度為750°C)。此結果顯示以常壓電漿噴射束製程應用於製備GDC薄膜於8YSZ基材上,可獲得一多孔性GDC薄膜,後續應用於YSZ電解質支撐型系統形成複合式固態電解質,將可作為靠近陰極材料端之擴散阻障層,以解決單一YSZ電解質與鑭鍶鈷鐵系列之陰極材料之界面上所發生之界面反應問題。


Gadolinia-doped ceria (GDC) materials are considered as electrolytes for the most potential to replace traditional yttria-stabilized zirconia (YSZ) in intermediate temperature solid oxide fuel cell (IT-SOFC). A novel atmospheric pressure plasma jet (APPJ) has been widely applied in industry due to its many advantages of operating in atmosphere, eliminating an expensive vacuum system, high efficiency, and low cost. This study is to evaluate the application of APPJ system to prepare GDC materials via the mixture solution of cerium nitrate hexahydrate (Ce(NO3)3.6H2O) and gadolinium nitrate hexahydrate (Gd(NO3)3.6H2O) as the precursor.
In this study, the framework is primary divided into two parts. For the first part, Ar and O2 were used as the carrier gases to feed the precursor mist into the APPJ preparing GDC particles, respectively. Materials characteristics of GDC particles are investigated by X-ray diffraction (XRD), Raman spectrometer (Raman), field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), X-ray fluorescence spectroscopy (XRF) and X-ray photoelectron spectroscope (XPS). Using Ar as carrier gas, the partial reduction of GDC from Ce4+ to Ce3+ was observed during the plasma synthesis. For the case of O2 carrier gas, however, the main chemical structure of Ce4+ in GDC particles was obtained, which could improve the ionic conductivity of electrolytes. According to the size relationship of the atomized droplets and precursors and chemical reactions inside the plasma region at normal pressure, the one-step fabrication of formation mechanism for the prepared GDC particles was proposed in this study. Meanwhile, the results also demonstrated that the feasibility of preparation of well-crystallized GDC nanoparticles by APPJ system was successfully achieved in short time.

中文摘要 I 英文摘要 III 致謝 V 目錄 VII 圖索引 X 表索引 XVI 第一章 緒論 1.1 前言 1 1.2 燃料電池簡介 3 1.3 研究動機 6 第二章 文獻回顧 2.1 固態氧化物燃料電池 7 2.1.1 固態氧化物燃料電池簡介 7 2.1.2 固態氧化物燃料電池之工作原理 8 2.2 固態電解質材料 9 2.3 固態電解質種類 10 2.3.1 鈣鈦礦結構固態電解質 10 2.3.2 磷灰石結構固態電解質 12 2.3.3 螢石結構固態電解質 14 2.4 固態電解質之製備技術 26 2.4.1 固態反應法 26 2.4.2 網印法 29 2.4.3 刮刀成型法 32 2.4.4 溶膠凝膠法 35 2.4.5 濺鍍法 37 2.4.6 化學氣相沉積法 40 2.4.7 噴霧熱解法 43 2.4.8 電漿噴塗法 49 2.5 常壓電漿 52 2.5.1 電漿定義 52 2.5.2 電漿原理及反應 52 2.5.3 常壓電漿基本特性 56 2.5.4 常壓電漿種類 57 2.5.5 常壓電漿製備陶瓷材料 59 第三章 實驗設備與程序 3.1 實驗材料 63 3.2 實驗設備 63 3.3 實驗步驟 66 3.4 電漿內部物種分析 68 3.5 材料分析 69 第四章 結果與討論 4.1 常壓電漿噴射束於GDC固態電解質粉體之製程分析 74 4.1.1 前驅物之特性分析 74 4.1.2 前驅物與霧化液滴之理論計算 76 4.1.3 電漿內部物種分析 76 4.1.4 載氣氣體種類效應 79 4.2 常壓電漿噴射束通入不同載氣氣體沉積GDC薄膜於YSZ基材並進行不同燒結溫度之材料分析與電性量測 100 第五章 結論與未來展望 5.1 常壓電漿噴射束於GDC固態電解質粉體之製程分析 122 5.2 常壓電漿噴射束通入不同載氣氣體沉積GDC薄膜於YSZ基材並進行不同燒結溫度之材料分析與電性量測 123 5.3 未來展望 124 第六章 參考文獻 125

[1] 丁仁東,“能源危機”,五南圖書 (2009)
[2] http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
[3] http://big5.ifeng.com/gate/big5/news.ifeng.com/world/detail_2012_06/01/14988108_0.shtml
[4] http://www.epochtimes.com/b5/11/2/3/n3160919.htm?p=all
[5] 黃鎮江,“燃料電池”,全華科技圖書 (2004)
[6] 衣寶廉,“燃料電池-高效、環保的發電方式”,五南圖書 (2003)
[7] 王曉紅、黃宏,“燃料電池基礎”,全華科技圖書 (2008)
[8] J. Larminie, A. Dicks, “Fuel Cell Systems Explained” Chichester, West Sussex: Wiley, 2ed. (2003)
[9] R. M. Ormerod, “Solid Oxide Fuel Cells”, Chemical Society Reviews, 32 (2003) 17–28.
[10] 肖鋼,“燃料電池技術”,全華科技圖書 (2010)
[11] N. Q. Minh, “Solid Oxide Fuel Cell Technology-Features and Applications”, Solid State Ionics 174 (2004) 271–277.
[12] S. P. S. Badwal, K. Foger, “Solid Oxide Fuel Cell Review”, Ceramics International 22 (1996) 257–265.
[13] A. B. Stambouli, E. Traversa, “Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy”, Renewable and Sustainable Energy Reviews 6 (2002) 433–455.
[14] H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F. B. Prinz, “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation”, Journal of The Electrochemical Society 154 (2007) B20–B24.
[15] A. Chroneos, R. V. Vovk, I. L. Goulatis, L. I. Goulatis, “Oxygen Transport in Perovskite and Related Oxides: A Brief Review”, Journal of Alloys and Compounds 494 (2010) 190–195.
[16] T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” Journal of the American Chemical Society, 116 (1994) 3801–3803
[17] T. Ishihara, J. A. Kilner, M. Honda, N. Sakai, H. Yokokawa, Y. Takita, “Oxygen Surface Exchange and Diffusion in LaGaO3 Based Perovskite Type Oxides”, Solid State Ionics 113–115 (1998) 593–600.
[18] K. Choy, W. Bai, S. Charojrochkul, B. C. H. Steele, “The Development of Intermediate-Temperature Solid Oxide Fuel Cells for the Next Millennium”, Journal of Power Sources 71 (1998) 361–369.
[19] S. Nakayama, T. Kageyama, H. Aono, Y. Sadaoka, “Ionic Conductivity of Lanthanoid Silicates, Ln10(SiO4)6O3, (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb)”, Journal of Materials Chemistry, 5, (1995) 1801–1805.
[20] 李鋒,“磷灰石型低溫固體電解質材料的研究進展”,矽酸鹽通報,第25卷 第4期 2006年8月。
[21] S. Nakayama, A. Ikesue, Y. Higuchi, M. Sugawara, M. Sakamoto, “Growth of Single-Crystals of Apatite-Type Oxide Ionic Conductor From Sintered Ceramics by a Seeding Method”, Journal of the European Ceramic Society 33 (2013) 207–210.
[22] S. Nakayama, M. Sakamoto, “Electrical Properties of New Type High Oxide Ionic Conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy)”, Journal of Materials Chemistry 18, (1998) 1413–1418.
[23] 梁雲淵,“固態反應法製備磷灰石結構矽酸鑭固態電解質”,國立台灣科技大學機械工程系碩士論文 (2011)。
[24] Y. L. Kuo, Y. Y. Liang, “Assessment of Thermochemically Stable Apatite La10(SiO4)6O3 as Electrolyte for Solid Oxide Fuel Cells”, Ceramics International 38 (2012) 3955–3961.
[25] L. Malavasi, C. A. J. Fisher, M. S. Islam, “Oxide-Ion and Proton Conducting Electrolyte Materials for Clean Energy Applications: Structural and Mechanistic Features”, Chemical Society Reviews, 39 (2010), 4370–4387.
[26] M. Mehring, “From Molecules to Bismuth Oxide-Based Materials: Potential Homo- and Heterometallic Precursors and Model Compounds”, Coordination Chemistry Reviews 251 (2007) 974–1006.
[27] P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, “Oxide Ion Conducting Solid Electrolytes Based on Bi2O3”, Solid State Ionics 89 (1996) 179–196.
[28] A. Laarif, F. Theobald, “The Lone Pair Concept and the Conductivity of Bismuth Oxides”, Solid State Ionics 21 (1986) 183–193.
[29] A. Navrotsky, “Thermochemical Insights into Refractory Ceramic Materials Based on Oxides with Large Tetravalent Cations”, Journal of Materials Chemistry 15, (2005) 1883–1890.
[30] E. C. Subbarao, “Zirconia an Overview”, Science and Technology of Zirconia, Advanced in Ceramic, 3 (1980) 1–24.
[31] F. Kroger, H. J. Vink, “Solid State Physics”, Vol. 3, F. Seitz, D. Turnbull (Eds.), Academic Press, New York, (1965) 304.
[32] E. C. Subbarao, “Solid Electrolytes and Their Applications”, Plenum New York (1980) 109.
[33] E. C. Subbarao, H. S. Maiti, “Solid Electrolyte with Oxygen Ion Conduction”, Solid State Ionics 11 (1984) 317–338.
[34] 黃炳照,鄭銘堯,“固態氧化物燃料電池之進展”,化工技術,第111期,2002年6月pp.135。
[35] J. F. Baumard, P. Abelard, “Science and Technology of Zirconia Ⅱ”, N. Claussen, M. Ruhle, A. H. Heuer (Eds.), Journal of the American Ceramic Society, Columbus, OH, (1984) 555.
[36] M. Mogensen, N. M. Sammes, G. A. Tompsett, “Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria”, Solid State Ionics 129 (2000) 63–94.
[37] 黃鼎翰,“以低溫水熱法合成奈米釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究”,國立台灣科技大學材料科技研究所碩士論文 (2004)。
[38] M. Mogensen, T. Lindegaard, U. R. Hansen, “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2”, The Electrochemical Society 141, (1994) 2122–2128.
[39] H. Inaba, H. Tagawa, “Ceria-Based Solid Electrolytes”, Solid State Ionics 83 (1996) 1–16.
[40] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, “Electrical Properties of Ceria-Based Oxides and Their Application to Solid Oxide Fuel Cells”, Solid State Ionics 52 (1992) 165–172.
[41] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, “Electrical Properties and Microstructure in The System Ceria-Alkaline Earth Oxide,” Journal of Materials Science, 23, (1988) 1036–1041.
[42] V. V. Khartona, F. M. B. Marquesa, A. Atkinson, “Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review”, Solid State Ionics 174 (2004) 135–149.
[43] B. C. H. Steele, “Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500°C”, Solid State Ionics 129 (2000) 95–110.
[44] B. C. H. Steele, A. Heinzel, “Materials for Fuel-Cell Technologies”, Nature 414, (2001) 345–352.
[45] Y. J. Leng, S.H. Chan, S.P. Jiang, K.A. Khor, “Low-Temperature SOFC with Thin Film GDC Electrolyte Prepared in Situ by Solid-State Reaction”, Solid State Ionics 170 (2004) 9–15.
[46] L. Zhao, X. Huang, R. Zhu, Z. Lu, W. Sun, Y. Zhang, X. Ge, Z. Liu, W. Su, “Optimization on Technical Parameters for Fabrication of SDC film by Screen-Printing Used as Electrolyte in IT-SOFC”, Journal of Physics and Chemistry of Solids 69 (2008) 2019–2024.
[47] Y. Lee, J. H. Joo, G. M. Choi, “Effect of Electrolyte Thickness on the Performance of Anode-Supported Ceria Cells”, Solid State Ionics 181 (2010) 1702–1706.
[48] H. Moon, S. D. Kim, S. H. Hyun, H. S. Kim, “Development of IT-SOFC Unit Cells with Anode-Supported Thin Electrolytes Via Tape Casting and Co-Firing”, International Journal of Hydrogen Energy 33 (2008) 1758–1768.
[49] J. H. Joo, G. M. Choi, “Micro-Solid Oxide Fuel Cell Using Thick-Film Ceria”, Solid State Ionics 180 (2009) 839–842.
[50] 羅幼旭,“奈米材料與化學”,東華大學化學系,2003年11月1日。
[51] G. B. Jung, T. J. Huang, M. H. Huang, C. L. Chang, “Preparation of Samaria-doped Ceria for Solid Oxide Fuel Cell Electrolyte by a Modified Sol-Gel Method”, Journal of Materials Science 36 (2001) 5839–5844.
[52] Y. M. Su, F. C. Kung, T. L. Su, P. C. Tsai, C. C. Lai ,Y. L. Kuo, “Material Characteristics and Electric Properties of SiOx-Doped GDC Electrolytes”, Journal of the Chinese Institute of Engineers 34 (2011) 31–38.
[53] Y. L. Kuo, Y. M. Su, “Sintering Behavior and Electrical Properties of Gadolinia-Doped Ceria Modified by Addition of Silicon Oxide and Titanium Oxide”, Micro and Nano Letters, 7, 5 (2012) 472–475.
[54] D. Beckel, A. B. Hütter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J. L. M. Rupp, L. J. Gauckler, “Thin Films for Micro Solid Oxide Fuel Cells”, Journal of Power Sources 173 (2007) 325–345.
[55] P. Briois, A. Billard, “A Comparison of Electrical Properties of Sputter-Deposited Electrolyte Coatings Dedicated to Intermediate Temperature Solid Oxide Fuel Cells”, Surface and Coatings Technology 201 (2006) 1328–1334.
[56] Y. L. Kuo, C. Lee, Y. S. Chen, H. Liang, “Gadolinia-Doped Ceria Films Deposited by RF Reactive Magnetron Sputtering”, Solid State Ionics 180 (2009) 1421–1428.
[57] S. E. Lin, Y. L. Kuo, C. H. Chou, W. C. J. Wei, “Characterization of Electrolyte Films Deposited by Using RF Magnetron Sputtering a 20 mol% Gadolinia-Doped Ceria Target”, Thin Solid Films 518 (2010) 7229–7232.
[58] M. Pan, G. Y. Meng, H. W. Xin, C. S. Chen, D. K. Peng, Y. S. Lin, “Pure and Doped CeO2 Thin Films Prepared by MOCVD Process”, Thin Solid Films 324 (1998) 89–93.
[59] H. Song, C. Xia, G. Meng, D. Peng, “Preparation of Gd2O3 Doped CeO2 Thin Films by Oxy-acetylene Combustion Assisted Aerosol-Chemical Vapor Deposition Technique on Various Substrates and Zone Model for Microstructure”, Thin Solid Films 434 (2003) 244–249.
[60] D. Barreca, A. Gasparotto, E. Tondello, C. Sada, S. Polizzi, A. Benedetti, “Nucleation and Growth of Nanophasic CeO2 Thin Films by Plasma-Enhanced CVD”, Chemical Vapor Deposition 9 No.4 (2003) 199–206.
[61] M. Kawano, K. Hashino, H. Yoshida, H. Ijichi, S. Takahashi, S. Suda, T. Inagaki, “Synthesis and Characterizations of Composite Particles for Solid Oxide Fuel Cell Anodes by Spray Pyrolysis and Intermediate Temperature Cell Performance”, Journal of Power Sources 152 (2005) 196–199.
[62] K. Okuyama, “Preparation of Micro-Controlled Particles Using Aerosol Process”, Journal of Aerosol Science, 22 (1991) S7–S10.
[63] J. C. Viguié, J. Spitz, “Chemical Vapor Deposition at Low Temperatures”, Journal of The Electrochemical Society, 122 (1975) 585–588.
[64] M. G. Chourashiya, S. H. Pawar, L. D. Jadhav, “Synthesis and Characterization of Gd0.1Ce0.9O1.95 Thin Films by Spray Pyrolysis Technique”, Applied Surface Science 254 (2008) 3431–3435.
[65] M. F. G. Sánchez, J. Peña, A. Ortiz, G. Santana, J. Fandiño, M. Bizarro, F. C. Gandarilla, J. C. Alonsoz, “Nanostructured YSZ Thin Films for Solid Oxide Fuel Cells Deposited by Ultrasonic Spray Pyrolysis”, Solid State Ionics 179 (2008) 243–249.
[66] M. F. G. Sánchez, A. Ortiz, G. Santana, M. Bizarro, J. Peña, F. C. Gandarilla, M. A. A. Frutis, J. C. Alonsoz, “Synthesis and Characterization of Nanostructured Cerium Dioxide Thin Films Deposited by Ultrasonic Spray Pyrolysis”, Journal of the American Ceramic Society, 93 [1] (2010) 155–160.
[67] M.G. Chourashiya, L. D. Jadhav, “Synthesis and Characterization of 10%Gd Doped Ceria (GDC) Deposited on NiO-GDC Anode-Grade-Ceramic Substrate as Half Cell for IT-SOFC”, International Journal of Hydrogen Energy 36 (2011) 14984–14995.
[68] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, “Atmospheric Pressure Plasmas: A Review”, Spectrochimica Acta Part B 61 (2006) 2–30.
[69] C. J. Li, X. J. Ning, C. X. Li, “Effect of Densification Processes on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells”, Surface and Coatings Technology 190 (2005) 60–64.
[70] C. J. Li, C. X. Li, Y. Z. Xing, M. Gao, G. J. Yang, “Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC”, Solid State Ionics 177 (2006) 2065–2069.
[71] N. P. Padture, K. W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E. H. Jordan, M. Gell, S. Jiang, T. D. Xiao, P. R. Strutt, E. García, P. Miranzo, M. I. Osendi, “Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray”, Acta Materialia 49 (2001) 2251–2257
[72] T. Bhatia, A. Ozturk, L. Xie, E. H. Jordan, B. M. Cetegen, M. Gell, X. Ma, N. P. Padture, “Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray”, Journal of Materials Research, 17, No. 9, (2002) 2363–2372.
[73] A. Saha, S. Seal, B. Cetegen, E. Jordan, A. Ozturk, S. Basu, “Thermo-Physical Processes in Cerium Nitrate Precursor Droplets Injected into High Temperature Plasma”, Surface and Coatings Technology 203 (2009) 2081–2091.
[74] D. Merche, N. Vandencasteele, F. Reniers, “Atmospheric Plasmas for Thin Film Deposition: A Critical Review”, Thin Solid Films 520 (2012) 4219–4236.
[75] A. Bogaerts, E. Neyts, R. Gijbels, J. V. D. Mullen, “Gas Discharge Plasmas and Their Applications”, 2002.
[76] J. R. Roth, “Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London”, 1995.
[77] B. Chapman, “Glow Discharge Processes”, John Wiley and Sons, Inc, United State of America, 1980, Chapter 5.
[78] 洪昭南,電漿反應器,化工技術,第三卷,第三期,1995,124–135。
[79] 陳寶清,真空表面處理工學,第三篇,傳勝出版社,台北台灣,1992。
[80] 劉志宏、黃駿、許文通、蔡禎輝、張所鋐,“以大氣電漿進行材料表面微米級圖案化之加工技術”,機械工業雜誌,306,2008,66。
[81] 楊士賢,“以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究”,中原大學化學工程學系碩士論文 (2005)。
[82] 洪昭南、郭有斌,化工技術,第81期,1999,190–204。
[83] L. Soukup, Z. Hubicˇka, A. Churpitab, M. Cˇada, P. Pokorný, J. Zemeka, K. Jureka, L. Jastrabík, “Investigation of the Atmospheric RF Torch-Barrier Plasma Jet for Deposition of CeOx Thin Films”, Surface and Coatings Technology 169 –170 (2003) 571–574.
[84] C. Huang, C. H. Liu, C. H. Su, W. T. Hsu, S. Y. Wu, “Investigation of Atmospheric-Pressure Plasma Deposited SiOx Films on Polymeric Substrates”, Thin Solid Films 517 (2009) 5141–5145.
[85] T. Aita, K. Ogawa, Y. Saito, Y. Sumiyoshi, T. Higuchi, S. Sato, “Microstructures of SiO2 and TiOx Films Deposited by Atmospheric Pressure Inductively Coupled Micro-Plasma Jet”, Surface and Coatings Technology 205 (2010) 861–866.
[86] Y. W. Hsu, H. C. Li, Y. J. Yang, C. C. Hsu, “Deposition of Zinc Oxide Thin Films by an Atmospheric Pressure Plasma Jet”, Thin Solid Films 519 (2011) 3095–3099.
[87] C. Huang, S. Y. Wu, Y. C. Chang, C. H. Pan, C. Y. Tsai, “The Protection of Flexible DSSC Polymeric Substrate Using Atmospheric Pressure Plasma Coating”, Journal of the Chinese Chemical Society 57 (2010) 1208–1211.
[88] K. M. Chang, S. H. Huang, C. J. Wu, W. L. Lin, W. C. Chen, C. W. Chi, J. W. Lin, C. C. Chang, “Transparent Conductive Indium-Doped Zinc Oxide Films Prepared by Atmospheric Pressure Plasma Jet”, Thin Solid Films 519 (2011) 5114–5117.
[89] A. Pfau, K. D. Schierbaum, “The Electronic Structure of Stoichiometric and Reduced CeO2 Surfaces: An XPS, UPS and HREELS Study”, Surface Science 321 (1994) 71–80.
[90] S. J. Shih, J. P. Huang, “Designing the Morphology of Ceria Particles by Precursor Complexes”, Ceramics International 39 (2013) 2275–2281.
[91] R. J. Lang, “Ultrasonic Atomization of Liquids”, The Journal of the Acoustical Society of America Volume 34 (2013) 6–8.
[92] X. L. Deng, A. Yu. Nikiforov, P. Vanraes, C. Leys, “Direct Current Plasma Jet at Atmospheric Pressure Operating in Nitrogen and Air”, Journal of Applied Physics 113, (2013) 023305.
[93] R. E. Walkup, K. L. Saenger, G. S. Selwyn, “Studies of Atomic Oxygen in O2+CF4 RF Discharges by Two-Photon Laser-Induced Fluorescence and Optical Emission Spectroscopy”, Journal of Chemical Physics 84 (1986) 2668–2674.
[94] S. Behle, A. Georg, Y. Yuan, J. Engemann, A. Brockhaus, “Imaging of Atomic Oxygen in a Microwave Excited Oxygen Plasma with Two-Dimensional Optical Emission Spectroscopy”, Surface and Coatings Technology 97 (1997) 734–741.
[95] R. X. Wang, W. F. Nian, H. Y. Wu, H. Q. Feng, K. Zhang, J. Zhang1, W. D. Zhu, K. H. Becker, J. Fang, “Atmospheric-Pressure Cold Plasma Treatment of Contaminated Fresh Fruit and vegetable Slices: Inactivation and Physiochemical Properties Evaluation”, European Physical Journal D (2012) 66: 276 1–7.
[96] P. Laboratory, “NIST: Atomic Spectra Database”, National Institute of Standards and Technology, USA.
[97] 鮑忠興,劉思謙,“近代穿透式電子顯微鏡實務”,滄海圖書 (2008)
[98] D. H. Prasad, H. R. Kim, J. S. Park, J. W. Son, B. K. Kim, H. W. Lee, J. H. Lee, “Superior Sinterability of Nano-Crystalline Gadolinium Doped Ceria Powders Synthesized by Co-Precipitation Method”, Journal of Alloys and Compounds 495 (2010) 238–241.
[99] L. M. Qiu, F. Liu, L. Z. Zhao, Y. Ma, J. N. Yao, “Comparative XPS Study of Surface Reduction for Nanocrystalline and Microcrystalline Ceria Powder”, Applied Surface Science 252 (2006) 4931–4935.
[100] Y. L. Kuo, Y. S. Chen, C. Lee, “Growth of 20 mol% Gd-Doped Ceria Thin Films by RF Reactive Sputtering: The O2/Ar Flow Ratio Effect”, Journal of the European Ceramic Society 31 (2011) 3127–3135.
[101] Y. Uwamino, T. Ishizuka, “X-ray Photoelectron Spectroscopy of Rare-earth Compounds”, Journal of Electron Spectroscopy and Related Phenomena 34 (1984) 67–78.
[102] M. V. R. Rao, T. Shripathi, “Photoelectron Spectroscopic Study of X-ray Induced Reduction of CeO2”, Journal of Electron Spectroscopy and Related Phenomena, 87 (1997) 121–126.
[103] J. L. M. Rupp, T. Drobek, A. Rossi, L. J. Gauckler, “Chemical Analysis of Spray Pyrolysis Gadolinia-Doped Ceria Electrolyte Thin Films for Solid Oxide Fuel Cells”, Chemistry of Materials 19 (2007) 1134–1142.
[104] P. Terzieff, K. Lee, “Electron Spectroscopy Studies on Amorphous GdFe and GdCo Alloys”, Journal of Applied Physics 50 (1979) 3565–3569.
[105] J. F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Minnesota: Physical Electronics, Inc. (1995)
[106] A. Tsoga, A. Gupta, A. Naoumidis, D. Skarmoutsos, P. Nikolopoulos, “Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells, ” Ionics, 4 (1998) 234–240.
[107] A. Tsoga, A. Naoumidis, , A. Gupta, D. Stöver, “Microstructure and Interdiffusion Phenomena in YSZ-CGO Composite Electrolyte” , Materials Science Forum, 794 (1999) 308–311,
[108] H. Mitsuyasu, Y. Nonaka, K. Eguchi, “Analysis of solid state reaction at the interface of yttria-doped ceria / yttria-stabilized zirconia”, Solid State Ionics 113–115 (1998) 279–284.
[109] H. Mitsuyasu, Y. Nonaka, K. Eguchi, H. Arai, “TEM Observation of Reaction at the Interface between Yttria-Doped Ceria and Yttria-Stabilized Zirconia”, Journal of Solid State Chemistry 129, (1997) 74–81.
[110] Y. Mishima, H. Mitsuyasu, M. Ohtaki, K. Eguchi, “Solid Oxide Fuel Cell with Composite Electrolyte Consisting of Samaria-Doped Ceria and Yltria-Stabilized Zirconia”, Journal of The Electrochemical Society 145 1004–1007.
[111] Z. Cheng, M. Liu, “Characterization of Sulfur Poisoning of Ni–YSZ Anodes for Solid Oxide Fuel Cells Using in Situ Raman Microspectroscopy”, Solid State Ionics 178 (2007) 925–935.
[112] A. Tsoga, A. Naoumidis, D. Stöver, “Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3 –Gd2O3 solid solutions”, Solid State Ionics 135 (2000) 403–409

無法下載圖示 全文公開日期 2018/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE