簡易檢索 / 詳目顯示

研究生: 洪維君
Wei-Chun Hung
論文名稱: 以多頻譜照明系統與多頻譜相機經由iccMAX色彩管理系統進行繪畫的色彩調節
Color tuning of a painting using a multispectral lighting system with a multispectral camera via iccMAX color management system
指導教授: 孫沛立
Pei-Li Sun
口試委員: 陳鴻興
Hung-Shing Chen
林宗翰
Tzung-Han Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: 多頻譜照明系統多頻譜成像系統色彩特性描述模式iccMAX描述檔
外文關鍵詞: multispectral lighting system, multispectral imaging, color characterization model, iccMAX profile
相關次數: 點閱:247下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 繪畫可能受到強光曝曬、灰塵和溫濕度等環境因素造成褪色。由於色彩是由光源和物體反射率所決定,使用多頻譜照明系統可以將偏色的繪畫復原到某個程度。如何決定LED燈源的輸入訊號,是影響色彩復原準確度的關鍵。iccMAX是個強大和多用途的色彩管理工具,它不單能讓不同的色彩媒體在D50光源下對色,還支援多頻譜與材料外貌的資料儲存與複製,並提供多元處理功能。iccMAX的多頻譜與多元處理功能,適用於本研究多頻譜相機與多頻譜燈源的色彩描述與校正。本研究首先探討濾鏡式多頻譜相機校正,以求取物體反射率的方法,利用階調線性化校正、優化的色彩混合矩陣運算,在iccMAX的架構下,獲得準確的反射率。接著研究多頻譜LED燈源複製輻射頻譜的方法:先利用逆向模式獲得燈源訊號的粗調值,再進一步最小二乘曲線擬合法方式獲得更準確的細調值。本研究最終使用一個8通道多頻譜相機獲得繪畫頻譜反射率。並使用一個有16通道的多頻譜LED燈源調變光源頻譜,透過iccMAX,使偏色的畫作更接近原作的色彩。


    The colors of a painting would discolor by a variety of environmental factors including light, dust and humidity. Using a multispectral lighting system can recover the faded colors to some degree. Since color appearance is determined by the spectral power distribution of the light source and the spectral reflectance of the object, how to determine input signals of the LED lamps is the key point. iccMAX is a powerful and more versatile tool for color management, which allows for consistent color reproduction across various devices with different native color spaces. It goes beyond D50 colorimetry, supports to store multispectral and martial appearance data, and provides multi-element processes to calculate the multi-dimensional data. The painting can be captured as a multispectral image by a multispectral camera using iccMAX framework. In this study, a filter-based multispectral camera was characterized first with iccMAX. It applies tone linearization with an optimal color-mixing matrix. On the other hand, the tunable multispectral LED systems also can be characterized to match a given spectral power by applying a rough estimation of the LED signals and then fine-tuning the signals by a Least squares curve fitting approach. A 16-channel LED was used to minimize the color differences between the original and the discolor reproduction.

    摘要 ABSTRACT 謝誌 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 研究目的 1.4 名詞解釋 1.5 論文架構 第二章 文獻探討 2.1 多頻譜影像 2.2 色彩特性描述模式 2.3 ICC 色彩管理系統 2.4 使用LED照明方式調整物體色外貌 第三章 研究方法 3.1 研究流程 3.2 實驗設備 3.3 研究範圍與限制 第四章 濾鏡式多頻譜相機校正 4.1 實驗設備與環境 4.1.1. 測色儀器與光譜解析度 4.1.2. 拍攝環境設置 4.1.3. 光源差異的表現 4.2. 實驗流程 4.3. 頻譜校正 4.3.1. 校正階調曲線 4.3.2. 頻譜內插與均勻度校正 4.3.3. 使用PCA法(Principal Component Analysis)重建物體反射率 4.4. 去模糊與對齊影像 4.5. 小結 第五章 經由 ICCMAX 架構優化濾鏡式多頻譜相機的色彩精確度 5.1 實驗設備與環境 5.1.1 測色儀器與光譜解析度 5.1.2 光源差異的表現 5.2 實驗流程 5.3 ICCMAX格式 5.3.1 V2版與 V4版的差異 5.3.2 MultiProcessElements 5.4 使用D2BX的描述檔進行光譜反射率估計 5.4.1 估計階調複製曲線 5.4.2 導出色彩混合矩陣 5.5 使用ICCMAX架構評估結果 5.5.1 相機色彩空間轉到頻譜式描述檔連結空間 5.5.2 相機色彩空間透過PCC轉到SRGB色彩空間 5.6 小結 第六章 使用多頻譜照明系統以ICCMAX描述檔進行繪畫的色彩調節 6.1. 實驗設備與環境 6.2. 實驗流程 6.3. 多頻譜照明系統特性描述模式 6.3.1 使用D2BX的描述檔進行光譜能量分佈估計 6.3.2 估測階調複製曲線 6.3.3 校正輸入訊號 6.3.4 色彩混合矩陣(color mixing matrix) 6.3.5 使用ICCMAX描述檔架構: MSLS-to-SpectralPCS 6.3.6 多頻譜照明系統的光譜曲線擬合 6.4. 以多頻譜照明系統與多頻譜相機經由ICCMAX色彩管理系統進行繪畫的色彩調節 6.4.1 印製測試圖片 6.4.2 多頻譜影像擷取 6.4.3 多頻譜影像空間採樣 6.4.4 決定多頻LED訊號的初始值 6.4.5 色差計算 6.4.6 求得優化的MSLS訊號值 6.5. 實驗結果與討論 6.6. 小結 第七章 結論與未來建議 7.1 結論 7.2 未來展望 參考文獻 附錄

    [1] 林國平(2009)。博物館科技應用前瞻分析--從 Horizon Report談起。博物館學季刊,23(3),5-15。
    [2] 雷祖康(2004)。博物館文物展示環境新光源的發展與應用思考。博物館學季刊,18(3),137-144。
    [3] 徐明景(2013)。行政院國家科學委員會專題研究計畫期末報告,特殊傳統顏色藝術品之多頻譜數位典藏研究案(II),取自: http://ir.lib.pccu.edu.tw/retrieve/61557/1002631H034001.pdf。
    [4] ICC, Introducing iccMAX. url: http://www.color.org/iccmax.xalter (visited on November 19, 2016) , 2015.
    [5] 徐明景(2013)。探索那變幻無窮的色彩傳奇。博物館簡訊,NO.64,中華民國博物館學會,6-9。
    [6] 項潔、陳雪華、鄭惇方(2002)。數位典藏之產業前景探討。經濟部技術處學界科專非技術領域學術研討會論文集,台北市:中華經濟研究院,435-447。
    [7] A. Mansouri, F.S. Marzani, J.Y. Hardeberg, P. Gouton. (2005) Optical calibration of a multispectral imaging system based on interference filters, Optical Engineering, 44(2), 1-12.
    [8] J. Brauers, N. Schulte, T. Aach. (2008) Multispectral filter-wheel cameras: Geometric distortion model and compensation algorithms, IEEE Transactions on Image Processing, 17(12), 2368-2380.
    [9] A. Pelagotti, A. Del Mastio, A. De Rosa, A. Piva. (2008) Multispectral imaging of paintings, IEEE Signal Processing Magazine, 25(4), 27-36.
    [10] M. Yamaguchi, H. Haneishi, N. Ohyama. (2008) Beyond Red-Green-Blue (RGB): spectrum-based color imaging technology, Journal of Imaging Science and Technology, 52(1), 1-15.
    [11] J. Brauers, T. Aach. (2008) Longitudinal aberrations caused by optical filters and their compensation in multispectral imaging, in: 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 525-528.
    [12] J. Brauers, T. Aach. (2008) Modeling and compensation of ghosting in multispectral filter wheel cameras, in: IEEE Southwest Symposium on Image Analysis and Interpretation, Santa Fe, New Mexico, USA, 85-88.
    [13] J. Brauers, S. Helling, T. Aach. (2009) Multispectral image acquisition with flash light sources, Journal of Imaging Science and Technology, 53(3).
    [14] S. Poger, E. Angelopoulou. (2001) Selecting components for building multispectral sensors, in: IEEE Conference on Computer Vision and Pattern Recognition, Technical Sketches, Kauai, Hawaii, USA.
    [15] S. Tominaga. (2012) Multispectral imaging, Proc. of 20th Color and Imaging Conference Final Program and Proceedings, 177-184.
    [16] R.S. Berns, L.A. Taplin, M. Nezamabadi, M. Mohammadi, Y. Zhao. (2005) Spectral imaging using a commercial color-filter array digital camera, in: Proceedings of the 14th Triennial ICOM-CC Meeting, volume 2, 743-750.
    [17] L. Miao, H. Qi, W.E. Snyder. (2004) A generic method for generating multispectral filter arrays, in: IEEE International Conference on Image Processing, volume 5, 3343-3346.
    [18] J. Brauers, T. Aach. (2008) A color filter array based multispectral camera, in: 12. Workshop Farbbildverarbeitung.
    [19] J.I. Park, M.H. Lee, M. D. Grossberg, S. K. Nayar. (2007) Multispectral imaging using multiplexed illumination, in: IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brasil, 1-8.
    [20] N.L. Everdell, I.B. Styles, E. Claridge, J.C. Hebden, A.S. Calcagni. (2009) Multispectral imaging of the ocular fundus using LED illumination, in: Proceedings of SPIE, Vol. 7371, Novel Optical Instrumentation for Biomedical Applications IV, 73711C 1-6.
    [21] M.B. Bouchard, B.R. Chen, S.A. Burgess, E.M.C. Hillman. (2009) Ultrafast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics, Optics Express, 17(18), 15670-15678.
    [22] S. Tominaga, N. Tanaka. (2008) Spectral image acquisition, analysis, and rendering for art paintings, Journal of Electronic Imaging, 17(4), 043022.
    [23] K.J. Zuzak, R.P. Francis, E.F. Wehner, J. Smith, M. Litorja, D.W. Allen, C. Tracy, J. Cadeddu, E. Livingston. (2009) DLP Hyperspectral Imaging for Surgical and Clinical Utility, in: Proc. SPIE, Vol. 7210, Emerging Digital Micromirror Device Based Systems and Applications, 721006, 1-9.
    [24] Y. Schechner, S. Nayar. (2002) Generalized mosaicing: wide field of view multispectral imaging, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10), 1334-1348.
    [25] H. Du, X. Tong, X. Cao, S. Lin. (2009) A prism-based system for multispectral video acquisition, in: IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 175-182.
    [26] R. Kawakami, J. Wright, Y.W. Tai, Y. Matsushita, M. Ben-Ezra, K. Ikeuchi. (2011) High-resolution hyperspectral imaging via matrix factorization, in: IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2329 - 2336.
    [27] K. Martinez, J. Cupitt, D. Saunders, R. Pillay. (2002) Ten years of art imaging research, Proceedings of the IEEE, 90(1), 28-41.
    [28] A. Ribés, F. Schmitt, R. Pillay, C. Lahanier. (2005) Calibration and spectral reconstruction for cristatel: an art painting multispectral acquisition system, Journal of Imaging Science and Technology, Technol.49, 563-573.
    [29] P. Cotte, D. Dupraz. (2006) Spectral imaging of Leonardo Da Vinci's Mona Lisa: An authentic smile at 1523 dpi with additional infrared data, in: Archiving 2006, Ottawa, Canada, 228-235.
    [30] R. S. Berns, L. A.Taplin, P. Urban, Y. Zhao. (2008) Spectral color reproduction of paintings, Conference on Colour in Graphics, Imaging, and Vision, CGIV 2008 Final Program and Proceedings, 484-488(5).
    [31] G. Novati, P. Pellegri, R. Schettini. (2005) An affordable multispectral imaging system for the digital museum, International Journal on Digital Libraries, 5(3), 167-178.
    [32] J. K. Delaney, E. Walmsey, B. H. Berrie, C. F. Fletcher. (2003) Multispectral imaging of paintings in the infared to detect and map blue pigments, in: Proceedings of the National Academy of Sciences, 120-136.
    [33] P. Colantoni, R. Pillay, C. Lahanier, D. Pitzalis. (2006) Analysis of multispectral images of paintings, in: 14th European Signal Processing Conference (EUSIPCO), Florence, Italy.
    [34] R.L. Easton Jr., K.T. Knox, W.A. Christens-Barry. (2003) Multispectral imaging of the Archimedes palimpsest, in: Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, IEEE, Washington, DC, USA, 111-116.
    [35] K. Rapantzikos, C. Balas. (2005) Hyperspectral imaging: potential in non-destructive analysis of palimpsests, in: IEEE International Conference on Image Processing, volume 2, Genoa, Italy, 618-621.
    [36] K. Bloechl, H. Hamlin, R.L.J. Easton. (2010) Text recovery from the ultraviolet-fluorescence spectrum for a treatise in the Archimedes palimpsest, in: Proceedings of SPIE, Vol. 7531, Computer Vision and Image Analysis of Art, San Jose, CA, USA, 1-9.
    [37] R.S. Berns. (2005) Rejuvenating the appearance of cultural heritage using color and imaging science techniques, in: 10th Congress of the International Colour Association, Granada, Spain, 369-374.
    [38] P. Cotte, D. Dupraz. (2006) Multispectral photography of the famous Mona Lisa Painting, in: Third European Conference on Color in Graphics, Imaging and Vision, IS& T, Leeds, UK, 311-317.
    [39] F.H. Imai, M.R. Rosen, R.S. Berns. (2001) Multi-spectral imaging of van Gogh's Self-portrait at the National Gallery of Art, Washington D.C., in: IS&T's Image Processing, Image Quality, Image Capture Systems Conference, Montreal, Quebec, Canada, 185-189.
    [40] 陳靜嫻(2007)。植基於 ICC 色彩管理系統的立體器物數位典藏攝影模式之研究,世新大學碩士學位論文。
    [41] 數位化工作流程指南:影像資料,數位典藏與數位學習國家型科技計畫,檢索日期2016年9月,取自: http://content.teldap.tw/index/?p=992
    [42] A. Mansouri, F.S. Marzani, P. Gouton. (2005) Development of a protocol for CCD calibration: application to a multispectral imaging system, International Journal of Robotics and Automation, 20(2), 94-100.
    [43] M. Shi, G. Healey. (2002) Using reflectance models for color scanner calibration, Journal of the Optical Society of America, 19(4), 645-656.
    [44] E.A. Day. (2003) The effects of multi-channel visible spectrum imaging on perceived spatial image quality and color reproduction accuracy, M.S. Thesis, Rochester Institute of Technology, NY.
    [45] F.H. Imai, L.A. Taplin, E.A. Day. (2003) Comparative study of spectral reflectance estimation based on broad-band imaging systems, Technical Report, Rochester Institute of Technology, College of Science, Center for Imaging Science, Munsell Color Science Laboratory, Rochester, New York, U.S.A.
    [46] V. Cheung, S. Westland, C. Li, J. Hardeberg, D. Connah. (2005) Characterization of trichromatic color cameras by using a new multispectral imaging technique, Journal of the Optical Society of America A, 22(7), 1231-1240.
    [47] Y. Zhao, R.S. Berns. (2007) Image-based spectral reflectance reconstruction using the matrix R method, Color Research & Application, 32(5), 343-351.
    [48] F.H. Imai, R.S. Berns, Di-T. Tzeng. (2000) A comparative analysis of spectral reflectance estimated in various spaces using a trichromatic camera system, Journal of Imaging Science and Technology, 44(4), 280-287.
    [49] H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, Y. Miyake. (2000) System design for accurately estimating the spectral reflectance of art paintings, Applied Optics, 39(35), 6621- 6632.
    [50] T. Johnson. (1996) Methods for characterizing colour scanners and digital cameras, Displays, 16(4), 183-191.
    [51] G. Hong, M.R. Luo, P.A. Rhodes. (2001) A study of digital camera colorimetric characterization based on polynomial modeling, Color Research & Application, 26(1), 76-84.
    [52] T.L.V. Cheung, S. Westland. (2002) Color camera characterisation using artificial neural networks, Proceedings of 10th Color and Imaging Conference, 117-120.
    [53] 鄒逸凡(2012)。利用數位相機進行光譜重建,國立臺灣科技大學博士學位論文。
    [54] F.H. Imai, R.S. Berns. (1999) Spectral estimation using trichromatic digital cameras, in: Proceedings of the International Symposium on Mulispectral Imaging and Color Reproduction for Digital Archives, Chiba University, Chiba, Japan, 42-49.
    [55] X. Zhang, H. Xu. (2008) Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis, Journal of the Optical Society of America, 25(2), 371-378.
    [56] S. Tominaga. (1996) Multichannel vision system for estimating surface and illumination functions, Journal of the Optical Society of America, 13(11),2163-2173.
    [57] H.L. Shen, P.Q. Cai, S.J. Shao, J. H. Xin. (2007) Reflectance reconstruction for multispectra imaging by adaptive Wiener estimation, Optics Express, 15(23), 15545-15554.
    [58] F.H. Imai, R.S. Berns. (2002) Spectral estimation of artist oil paints using multi-filter trichromatic imaging, Proceedings of SPIE, Vol. 4421, 504-507.
    [59] S. Bianco, F. Gasparini, R. Schettini, L. Vanneschi. (2008) Polynomial modeling and optimization for colorimetric characterization of scanners, Journal of Electronic Imaging, 17(4), 043002.
    [60] S. Lin, H.Y. Shum. (2001) Separation of diffuse and specular reflection in color images, in: IEEE Conference on Computer Vision and Pattern Recognition, volume 1, Kauai, Hawaii, USA, 341-346.
    [61] M.S. Drew, G.D. Finlayson. (2007) Analytic solution for separating spectra into illumination and surface reflectance components, Journal of the Optical Society of America A, 24(2), 294-303.
    [62] P. Green. (1999) Understanding digital color 2nd Ed. Pittsburgh, PA: GATF Press.
    [63] 孫沛立、陳鴻興、詹文鑫、羅梅君、胡國瑞、徐道義、黃日峰(2009)。顯示色彩工程學,全華圖書。
    [64] 羅鴻文(2015)。數位色彩檢視系統於藝術品保存之應用,文化資產保存學刊,31期,79-92。
    [65] H. Wu, J. Dong, G. Qi, G. Zhang. (2015) Optimization of LED light spectrum to enhance colorfulness of illuminated objects with white light constraints, Journal of the Optical Society of America A, 32(7), 1262-1270.
    [66] 耿鳳英(2001)。博物館展示照明,博物館學季刊。
    [67] F. Viénot, G. Coron, B. Lavédrine. (2011) LEDs as a tool to enhancefaded colours of museums artefacts, Journal of Cultural Heritage, 12(4), 431–440.
    [68] M. Tsuchida, K. Hiramatsu, K. Kashino. (2016) Designing Spectral Power Distribution of Illumination with Color Chart to Enhance Color Saturation, Proceedings of 24th Color and Imaging Conference, 278-282.
    [69] R.A. Horn, C.R. Johnson. (1991) Topics in Matrix Analysis, Chapter 3. Cambridge University Press.
    [70] K. Baker. (2005) Singular Value Decomposition Tutorial. url: http://davetang.org/file/Singular_Value_Decomposition_Tutorial.pdf
    [71] R.C. Gonzalez, R.E. Woods. (2007) Digital image processing (3rd Edition), Prentice Hall.
    [72] D.G. Lowe. (2004) Distinctive image features from scale-invariant key points, International Journal of Computer Vision, 60(2), 91-110.
    [73] M. Derhak, P. Green, T. Lianza, W. Li. (2015) Introducing iccMAX –A New Platform for Color Management, Proceedings of The 1st International Conference on Advanced Imaging, At National Center of Science , Tokyo.
    [74] ICC, Specification ICC.2:2016-07 (iccMAX). url: http://www.color.org/icc_specs2.xalter (visited on July 19, 2016) , 2016.
    [75] ICC, Introducing The reasons for changing to the v4 ICC profile format. url: http://color.org/advantagesV4.pdf. (visited on November 19, 2016) , 2016.
    [76] H. Bay, T. Tuytelaars, L.V. Gool. (2006) SURF: Speeded up robust features, in European Conference on Computer Vision, 404-417. 

    QR CODE