簡易檢索 / 詳目顯示

研究生: 謝昌宏
Chang-Hung Hsieh
論文名稱: 應用於多頻譜LED照明系統之色偏感測與補償方法
The color deviation sensing and compensation method for multi-spectral LED lighting system
指導教授: 李宗憲
Tsung-Xian Lee
口試委員: 傅瀚葵
Han-Kuei Fu
陳鴻興
Hung-Shing Chen
孫沛立
Pei-Li Sun
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 96
中文關鍵詞: LED多頻譜照明系統色彩感測器光線補償
外文關鍵詞: Multi-spectral LED lighting, Color sensor, light compensation
相關次數: 點閱:272下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多頻譜LED照明系統相較於傳統照明光源的優勢在於它可以透過調光的方式在不同的場合營造出使用者需要的照明環境。然而LED光源在長時間電流的驅動下,往往受其電與熱特性的影響導致光功率下降甚至光源衰變程度不一而產生色偏的困擾。為了能夠偵測光源色偏的問題,光譜儀是一個非常精確的測色儀器能夠直接偵測頻譜的變化,但是考量其價格與普遍性的問題,此設備並非是較好的選擇。因此,本論文採用兩顆RGB色彩感測器作為內部光源與外部環境光感知色彩的裝置,透過色彩校正,能夠在此範圍內不同照度的條件下達到∆u’v’平均小於0.0015,平均照度誤差小於10lux,以用來感測光源色偏現象。而當光源輸出不符理想時,我們透過閉迴路控制的方式進行光源的補償,其結果顯示色彩或是照度偏差達一定誤差時,系統能夠自動地進行調節且有效地維持光源輸出,在三種測試光源的設定上照度誤差為2.2lux/5.6lux/5.3lux,色溫誤差也僅只有5.9K/12.2K/11.9K。
    在環境光感測部分,我們透過收集4種光源類別共計24款照明條件對於色彩感測器的特性進行分類,進而發展出決策樹,建立不同環境光源下的校正矩陣,以利色彩感測器判斷室內環境中的照明條件。我們進一步提出兩種多頻譜LED照明的補光與應用模式,一種會隨著環境光色做照度調節,此作法能達到節能的目的;而另一種則是混和環境光在特定的區域達到使用者的需求。在誤差計算後,第一種模式Du’v’小於0.0015,DY僅有0.77%,在另一種模式下Du’v’為0.0017,DY則是2.9%。其結果顯示能有效應用在兩種應用情境中。


    The key point enabling multi-spectral LED lighting to be superior to the traditional lighting source is that multi-spectral LED lighting could create a suitable lighting environment by dimming for users in different occasions. However, under the long-term current driven, the effects of electricity and heat from LED Lighting would reduce optical power output and even lead to inconsistent light source decay, which results in color difference. In order to detect color difference of light source, spectrometer, a considerably accurate color detecting instrument, could identify changes in spectrum. Yet, in light of price and universality of spectrometer, the instrument is not a better choice. Therefore, the thesis utilizes two RGB color sensors as the device to perceive interior light source and ambient light. After color calibration, the sensor could get average ∆u’v’ less than 0.0015 and average illuminance error less than 10lux under various illuminance within the range of common mixed temperature (2000K-7000K) to detect color deviation of light.
    As the outcome of light source is beyond expectation, we would compensate light source via closed-loop control. The result implies that as differences of color or illuminance have reached certain errors, system can adjust automatically and keep producing light source output effectively. Moreover, by utilizing the way of control, measuring under warm, neutral and cool color temperatures could obtain illuminance errors with 2.2lux/5.6lux/5.3lux respectively and errors of color temperature only with 5.9K/12.2K and 11.9K.
    In terms of ambient detection, we classify characteristics of color sensor through collecting four kinds of light source with total twenty-four lighting conditions, thereby generating decision tree. Applying varied light sources chosen by decision tree into calibration matrix, color sensor could recognize lighting condition of interior environment. We, further, propose two modes where light supplement of multi-spectral LED lighting is applied. One of the modes could adjust illumination as color of ambient light alters, which can achieve the purpose of saving energy. The other could meet users’ demands by mingling ambient light in specific area. After calculating differences, the Du’v’ under the first mode is less than 0.0015 and DY is only 0.77%. Under the other mode, the Du’v’ is only 0.0017 and DY is merely 2.9%. The outcomes show that light supplement of multi-spectral LED lighting could achieve effective effect when applied into these two modes.

    中文摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第1章 緒論 1 1.1 研究背景及動機 1 1.2 論文大綱 3 第2章 文獻探討 5 2.1 色彩感測器相關校正方法 5 2.2 光源補償相關研究 9 第3章 實驗設置 12 3.1 照明燈具 12 3.1.1 照明光源特性 13 3.1.2 光源調控之驗證 19 3.2 色彩感測器 28 3.3 單晶片微控制器與調控原理 30 第4章 照明系統內部校正與補償 31 4.1 色彩感測器之校正 31 4.1.1 色彩感測器之特性分析 31 4.1.2 色彩感測器校正流程 35 4.1.3 校正目標最少化 36 4.1.4 色差驗證 36 4.1.5 照度誤差驗證 38 4.1.6 校正結果比較 40 4.2 光源衰變 42 4.2.1 各光源衰變情形 42 4.3 閉迴路控制系統 43 4.3.1 閉迴路控制之驗證 45 第5章 環境光源外部校正與補償 57 5.1 環境光源 57 5.1.1 分類流程與決策樹之建立 58 5.2 存在環境光源之燈光模式 67 5.2.1 隨外在光源色溫進行照度補償 67 5.2.2 隨設定目標色溫照度進行補償 72 第6章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 77 第7章 參考文獻 78

    1. E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005).
    2. S. Muthu, F. J. Schuurmans, and M. D. Pashley, "Red, green, and blue LED based white light generation: issues and control," in Conference Record of the Industry 2002 Applications Conference, 37th IAS Annual Meeting. , (IEEE, 2002), 327-333.
    3. S. Robinson and I. Ashdown, "Polychromatic optical feedback control, stability, and dimming," in SPIE Optics + Photonics, (SPIE, 2006), 1-10.
    4. M. Royer, "Color Stability of LEDs Understanding the Basics" (Energy Efficency & Renewable Energy, June 3, 2014), retrieved https://www1.eere.energy.gov.
    5. Y. Gu, N. Narendran, T. Dong, and H. Wu, "Spectral and luminous efficacy change of high-power LEDs under different dimming methods," in Proc. SPIE, 2006), 63370J.
    6. K. Loo, Y. Lai, S.-C. Tan, and K. T. Chi, "On the color stability of phosphor-converted white LEDs under DC, PWM, and bilevel drive," IEEE transactions on power electronics 27, 974-984 (2012).
    7. M. Dyble, N. Narendran, A. Bierman, and T. Klein, "Impact of dimming white LEDs: chromaticity shifts due to different dimming methods," in Proc. SPIE, 2005), 291-299.
    8. J. Smith, "TAOS Photo Sensor Response Part I: Sensitivity to Wavelength" (TAOS, June 30, 2008), retrieved http://www.ams.com.
    9. H. Burton, Lux and CCT Calculations using ams Color Sensors, Designer’s Notebook (ams, 2013), pp. 1-16.
    10. R. Schaar, Designing the VEML6040 RGBW Color Sensor Into Applications, Application Note (Vishay Semiconductors, 2016), pp. 1-18.
    11. T. B. Glenn Lee, Chromaticity Control of RGB LEDs using TCS230, Designer's Notebook (TAOS, 2006), pp. 1-14.
    12. J. Smith, Calculating Color Temperature and Illuminance using the TAOS TCS3414CS Digital Color Sensor, Designer's Notebook (TAOS, 2009), pp. 1-7.
    13. J.-S. B. Valencia, F.-E. L. Giraldo, and J.-F. V. Bonilla, "Calibration method for Correlated Color Temperature (CCT) measurement using RGB color sensors," in 2013 XVIII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA), (IEEE, 2013), 1-6.
    14. T. Nimz, C. Bodenstein, and M. Berekovic, "LED application specific calibration method for color measurements," in 2015 International Conference on Applied Electronics (AE), (IEEE, 2015), 169-174.
    15. M. M. H. Aldrich, "Dynamic solid state lighting," (Massachusetts Institute of Technology, US, 2010).
    16. A. T. Lee, H. Chen, S.-C. Tan, and S. R. Hui, "Precise dimming and color control of LED systems based on color mixing," IEEE Transactions on Power Electronics 31, 65-80 (2016).
    17. D. S. S. Ahmed, "Accurate Control of Indoor White LED Light Scenarios" (Vishay Semiconductors, 2016), retrieved https://wp.me/p5HmNC-dP.
    18. S. Muthu, F. J. Schuurmans, and M. D. Pashley, "Red, green, and blue LEDs for white light illumination," IEEE Journal of selected topics in quantum electronics 8, 333-338 (2002).
    19. H.-T. Chen, S.-C. Tan, and S. R. Hui, "Nonlinear dimming and correlated color temperature control of bicolor white LED systems," IEEE Transactions on Power Electronics 30, 6934-6947 (2015).
    20. S. J. W. Tang, K. Y. Ng, V. Kalavally, and J. Parkkinen, "Closed-loop color control of an RGB luminaire using sensors onboard a mobile computing system," in 2016 IEEE Student Conference on Research and Development (SCOReD), (IEEE, 2016), 1-5.
    21. M. Aldrich, N. Zhao, and J. Paradiso, "Energy efficient control of polychromatic solid state lighting using a sensor network," in SPIE Optical Engineering + Applications, (SPIE, 2010), 1-15.
    22. B. Earl, "Calibrating Sensors" (Adafruit Industries 2016), retrieved https://cdn-learn.adafruit.com.
    23. M. Anandan, "Color sensor integrated light emitting diode for LED backlight," US 2007/0170449 A1 (Jul-27 2007).
    24. J.-S. Kim, H.-B. Oh, A.-H. Kim, J.-S. Kim, E.-S. Lee, B.-J. Goh, J.-H. Choi, Y.-J. Shin, J.-Y. Baek, and K. S. Lee, "An array-type RGB sensor for precision measurement of pH," Journal of the Optical Society of Korea 19, 700-704 (2015).
    25. C. Chen and C. Tsou, "Silicon-based white LED packaging module with an integrated RGB color sensor," IEEE Photonics Technology Letters 27, 553-556 (2015).
    26. A. M. Systeme, TCS3472 Color Light-to-Digital Converter with IR Filter, [v1-02] ed., Datasheet (ams, 2016), pp. 1-40.
    27. R. Schaar, Designing the VEML6040 RGBW Color Sensor into Applications, Application Note (Vishay Semiconductors, 2016), pp. 1-18.
    28. M. GmbH, MRGBiCT RGB Sensor, V3.1 ed., Datasheet (MAZet, 2016), pp. 1-11.
    29. X. Qu, S.-C. Wong, and K. T. Chi, "Temperature measurement technique for stabilizing the light output of RGB LED lamps," IEEE transactions on instrumentation and measurement 59, 661-670 (2010).
    30. T.-P. Sun and C.-H. Wang, "Specially designed driver circuits to stabilize LED light output without a photodetector," IEEE transactions on power electronics 27, 4140-4152 (2012).
    31. X. Ma, S. Bader, and B. Oelmann, "Characterization of Indoor Light Conditions by Light Source Classification," IEEE Sensors Journal 17, 3884-3891 (2017).
    32. A. M. Systeme, Improving Color Sensor Lux Accuracy, v1-00 ed., Application Note (ams, 2015), pp. 1-8.

    QR CODE