簡易檢索 / 詳目顯示

研究生: 林敬弦
JING-SHIAN LIN
論文名稱: 個人運動模式辨識與建模
Identification and Modeling of Human Motions
指導教授: 高維文
Wei-Wen Kao
口試委員: 姜嘉瑞
Chia-Jui Chiang
張淑淨
Shwu-Jing CHANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 134
中文關鍵詞: 運動辨識慣性導航運動模式步伐模型加速儀陀螺儀
外文關鍵詞: identification motions, INS(Integrated Navigation System)
相關次數: 點閱:226下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前用來量測個人移動距離的方法有兩大種,第一種:GPS的運用;第二種:計步器,但是利用GPS來計算移動距離的結果易受到外界環境影響,而計步器在短距離的誤差極大,因此本論文跳脫這兩種類型,改去探討目前還在研究的計算方式:利用感知器去取得移動時的訊號,再依靠這些訊號去計算出目前的移動距離。但是這種計算方式容易受到一些雜訊或是外在因素的影響,因此為了防止這些誤差,本論文先行辨識出當前運動,再依據個別的運動模式配合適當的計算方式,以提升準確率。

    本論文的重點可分為三大部份,第一部分是使用慣性導航的去推估個人移動後的距離,第二部分藉由PDR的方式去分析量測訊號,再利用分析所得的變數去辨識人類在移動時常出現的運動模式,第三部分藉由第二部分辨識出的結論,對每一種運動模式建立適合的步伐模型,再進行相對應的實驗。

    本論文使用加速儀、陀螺儀來分辨出當前的運動模式,再配合上各模式的步伐模型,可以減少許多雜訊干擾與相似運動的影響。若將其應用於室內運動,此種方式的估算出的距離準確率將會高於計步器的結果。


    At present, there are two methods to measure the human moving distance. The first one is to use GPS. The second one is to use a pedometer. However, the data collected by using GPS to measure the moving distance is easily influenced by the external factors; besides, using pedometers to measure the short distance will have big error as well. As a result, this study will avoid the former two methods and aims at the new method which is still in research. This is to use the perceptron to get the moving signal, and then, based on those signals, to count out the moving distance. Nevertheless, this method is easily affected by eternal factors like miscellaneous signals. In order to decrease the error, this study will recognize the present mode of motions at first. Second, according to the individual motions mode, the researcher take the appropriate compute methods to increase the degree of accuracy.

    There are three sections in this study. The first section is to use INS(Integrated Navigation System)to compute the individual moving distance. The second section is use PDR to analyze signals, and then use the parameter to recognize the motions mode which appears most often while people is moving. The third section is based on the conclusion of the second section to establish the appropriate model for each motions mode; and then, to do the experiment on those modes.

    This study uses accelerometer and gyroscope to recognize the current motions mode, and match the diverse model for corresponding modes. In this way, it can decrease the influences of miscellaneous signals and similar motions modes. If applied to the indoor activities, this result of using this method will be much more accurate than the pedometer.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 目 錄 VI 表 目 錄 X 第一章 緒論……………………………………………………………..1 1.1. 前言……………………………………………………………………1 1.2. 研究動機………………………………………………………………1 1.3. 文獻回顧………………………………………………………………2 1.4. 論文架構………………………………………………………………2 第二章 個人運動INS分析………..……………………………………4 2.1. 慣性導航座標位置計算………………………………………………4 2.1.1 體座標定義………………………………...…………………...4 2.1.2 固定座標定義………………………………...………………...4 2.1.3 體座標和固定座標的轉換關係……………………………......5 2.1.4 動座標角速度與尤拉角關係…………...……………….……..6 2.1.5 四元數轉換………………………….…………………….……8 2.2. 慣性導航測試…………………………………………..……………11 2.3. 感測器量測誤差分析……………………………………..…………12 2.3.1. 雜訊誤差累積……………………………….……..……….......12 2.3.2. 人體姿態的影響……………………………………..…………14 第三章 個人運動訊號分析………………..………………….…...…..16 3.1. 步伐偵測演算法……………………………………..…...…….……16 3.2. 訊號特徵……………………………………..………………………19 3.2.1 低通濾波 MAF(Moving Average Filter).………..………….20 3.2.2 走路與跑步的訊號特徵.……….……………………..……..22 3.2.2.1 走路與跑步的相異性…………………………...……22 3.2.2.1 走路與跑步的相關性…………………………...……23 3.3. 加速度波峰間的物理意義…………………………………………..25 3.3.1 走路的波峰意義.……….……………………………..……..25 3.3.2 跑步的波峰意義.……….……………………………..……..27 3.4. 同運動不同速度與加速儀訊號之間的關係………………………..25 第四章 運動模式辨識…………………..………………………....…..35 4.1. 設定區分運動模式的變數…………………………………………..37 4.2. 模糊邏輯…………………………………………………………..…47 4.3. 相異運動模式的區分流程…………………………………….….…50 4.4. 運動模式辨識成功率……………………………………………..…52 4.5. 最終辨別運動模式的流程圖與結果……………………………..…78 第五章 建立步伐模型…………………………….…………………81 5.1. 訊號指標計算……………………………………………………..…81 5.2. 步伐長度估測演算法……………………………………………..…94 5.3 . 走路模型的參數估測…………………….………………………….95 5.3.1. 不同走路模型的誤差比較……………………………...…….. 96 5.4. 跑步模型的參數估測…………………………………..……..106 5.4.1 線性模型……….……….……………………………..……106 5.4.2 高次項的線性模型.……….…………………………..……106 5.5. 變換速度的走路實驗………………………..108 第六章 結論與未來展望………...…………………………………...109 6.1. 結論…………………………………………………………………109 6.2. 建議…………………………………………………………………110 6.3. 未來展望……………………………………………………………110 參考文獻…………………..…………………………………….….….111

    [1] 姜嘉瑞,GPS與INS整合之三維定位系統研究,碩士論文,台灣工業技術學院機械工程技術研究所,台北,1997。
    [2] 陳德徽,以DSP晶片實現飛彈導控整合電路,碩士論文,國立成功大學航空太空工程研究所,2004
    [3] 黃良吉,GPS與感知器整合於三維地面車輛定位之應用,碩士論文,台灣科技大學機械工程研究所,台北,2006。
    [4] 劉建良,感知器於個人定位之步行分析與應用,碩士論文,台灣科技大學機械工程研究所,台北,2008。
    [5] 周亞慶,模型車側滑運動分析與控制,碩士論文,台灣科技大學機械工程研究所,台北,2008。
    [6] 林子閔,超音波與感知器整合於導盲手杖定位之應用,碩士論文,國立台灣科技大學機械工程技術研究所,2009。
    [7] 張弘毅,整合GPS與MEMS感知器於自行車導航系統支應用,碩士論文,台灣科技大學機械工程研究所,台北,2010。
    [8] 陳慶坤,步伐偵測與GPS整合之個人運動定位系統,碩士論文,台灣科技大學機械工程研究所,台北,2011
    [9] 林君明教授,導航與通訊e-learning平台建構,中華大學機航所教授
    [10] http://www.youtube.com/watch?v=67MxLxaVuAQ&feature=related
    [11] 周國棟,2008,FLASH動畫中人物的走路規律,
    Available from:http://flash.abang.com/od/cartoon/
    [12] Ling Pei, Ruizhi Chen, Jingbin Liu, Wei Chen, Heidi Kuusniemi1, Tomi Tenhunen, Tuomo Kröger, Yuwei Chen, Helena Leppäkoski, Jarmo Takala
    “Motion Recognition Assisted Indoor Wireless Navigation on a Mobile Phone”
    Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of navigation, pp. 3366-3375, 2010
    [13] Mahesh Chowdhary, SiRF Technology, San Jose, CA, USA, Manish Sharma, Arun Kumar, Kolin Paul, Mahaveer Jain, Chinmay Agarwal, Gagan Narula, IIT, Delhi, India “Context Detection for Improving Positioning Performance and Enhancing User Experience” Proceedings of the 22rd International Technical Meeting of the Satellite Division of the Institute of navigation, 2009
    [14] Christopher J. Matthews, Yohannes Ketema, Demoz Gebre-Egziabhera and Michael Schwartz “In-Situ Step Size Estimation Using a Kinetic Model of Human Gait” Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of navigation, pp. 511-524, 2010
    [15] S.H. Shin, C.G. Park, J.W. kim, H.S. Hong and J.M. Lee, ”Adaptive Step Length EstimationAlogrithm Using Low-Cost MEMS Inertial Sensors”, IEEE Sensors Applications Symposium San Diego, California USA,6-8 february 2007.
    [16] M.S.Lee,S.H.Shin,C.G.Park, “Evaluation of a Pedestrian Walking Status Awareness Algorithm for a Pedestrian Dead Reckoning” Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of navigation, , 2010
    [17] Wei chen, Ruizhi Chen, Heidi Kuusniemi, Jianyu Wang, “An Effective Pedestrian Dead Reckoning Algorithm Using aUnified Heading Error Model”,
    Proceedings of the IEEE/ION position, location and navigation symposium (PLANS) 2010.
    [18] H.-J. Jang, J.W. Kim and D.-H. Hwang , ”Robust step detection method for pedestrian navigation systems”, Electronics Letters, Volume 43, Issue 14, 2007.
    [19] Zexi Liu,Chang-Hee Won, “Knee and Waist Attached Gyroscopes for Personal Navigation:Comparison of Knee,Waist and Foot Attached Inertial Sensors”, Proceedings of IEEE/ION PLANS 2010, May 4-6,2010.
    [20] G.Lachapelle, S. Godha and M.E Cannon, “Performance of integrated HSGPS-IMU technology for pedestrian navigation under signal masking”, Proc. European Naviation Conference, Manchester, UK, 2006.
    [21] W. Chen, Ruizhi Chen, Heidi Kuusniemi, Jianyu Wang, “An Effective Pedestrian Dead Reckoning Algorithm Using a Unified Heading Error Model”, Proceedings of the IEEE/ION position, location and navigation symposium (PLANS) 2010.
    [22] L. Fang, P. Antsaklis, L. Montestruque, M. McMickell, M, Lemmon, Y. Sun, H. Fang, I Koutroulis, M. Haenggi, M. Xie, and X. Xie, ”Design of a wirelss assisted pedestrian dead reckoning system-the NavMote experience”, IEEE Transactions on ransactions on instrumentation and measurement, Vol. 54, No. 6,December 2005.
    [23] S. Cho and C. Park, ”MEMS Based Pedestrian Navigation System,” The Journal of Navigation, vol. 59,Issue 01, pp. 135-153,2006.
    [24] D. A. Grejner-Brzezinska, C. K. Toth, and S. Moafipoor, ”Pedestrian tracking and navigation using an adptive knowledge system based on neural networks”, Joumal of Applied Geodesy, 2007.
    [25] S. Moafipoor, D. A. Grejner-Brzezinska, and C. K. Toth, ” A fuzzy dead reckoning algorithm for a personal navigation, ”Journal of The Institute of Navigation, 2008.

    QR CODE