簡易檢索 / 詳目顯示

研究生: 李欣翰
Hsin-Han Lee
論文名稱: 雙輪倒單擺車之智慧型運動控制
Intelligent Motion Control of Two Wheel Inverted Pendulum Vehicle
指導教授: 黃緒哲
Shiuh-Jer Huang
口試委員: 張以全
Peter I-Tsyuen Chang
周瑞仁
Jui-jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: FSMC雙輪倒單擺車Arduino陀螺儀加速度計死區
外文關鍵詞: FSMC, Two-Wheel Inverted Pendulum, Arduino, Gyroscope, Accelerometer, Dead Zone
相關次數: 點閱:327下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是進行雙輪倒單擺車的自動運動控制,雙輪倒單擺車使用Arduino Nano 作為控制核心,利用陀螺儀及加速度計量測車身傾斜角及車身傾斜角速度,並透過卡爾曼濾波器進行資料融合,得到較佳的傾斜角資訊。使用直流輪轂馬達作為動力源,透過旋轉編碼器量測輪轂馬達的位移量及轉速,並在前方設有轉向機構,透過電位計達到兩輪差速轉向功能。
    控制器使用不需模型並具有高強健性的模糊滑動模式控制器(Fuzzy Sliding Mode Control),由於輪轂馬達存在著死區的特性,因此將死區直接設計在模糊規則中,使其達到穩定平衡控制,並設計兩輪同步控制器、速度控制器、位置控制器以提升輪車之移動性能,經實驗結果證明,使用 FSMC 控制器能成功使倒單擺車達成各種動作之控制。


    In this thesis, the design and implementation of two-wheel inverted pendulum (TWIP) vehicle motion control is investigated. Arduino Nano is used as the controller of this system. An accelerometer and gyroscope sensors are used to measure the tilt angle and angular velocity of the inverted pendulum. Kalman Filter is employed to estimate the accurate tilt angle based on sensor fusion process. DC hub motor is employed as the wheel driving power and encoders are used to measure the rotational speed of motors. TWIP vehicle turning is based on the handle bar potentiometer signal.
    The model-free and robust fuzzy sliding model controller (FSMC) is chosen for controlling this system. The significantly dead zone characteristic is considered into fuzzy rule base directly. In addition, TWIP balance control, wheel synchronization control, velocity and position control blocks are designed and integrated into the system control for improving the vehicle motion performance. The experimental results show that the FSMC controller successfully monitors the TWIP vehicle dynamic operator.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 4 1.3 論文架構 4 第二章 系統架構 5 2.1 雙輪倒單擺硬體架構 7 2.1.1 旋轉編碼器E6C2-C 7 2.1.2 三軸加速度計MMA7361 9 2.1.3 雙軸陀螺儀LPY503AL 12 2.1.4 卡爾曼濾波器(Kalman Filter) 14 2.1.5 無線通訊模組XBee S1 16 2.1.6 直流輪轂馬達 17 2.2 Arduino Nano 3.0 19 2.2.1 計時計數器與脈寬調變訊號(Timer、PWM) 21 2.2.2 類比數位轉換器(ADC) 23 2.2.3 外部訊號變化中斷(PCINT) 25 2.3 馬達驅動電路 27 2.3.1 半橋驅動晶片 IR2104 29 2.3.2 靴帶電路(Bootstrap) 30 2.4 主控制板電路 32 第三章 控制理論 35 3.1 模糊邏輯控制 35 3.1.1 模糊集合與隸屬函數 35 3.1.2 基本模糊控制器架構 36 3.2 滑動模式控制 40 3.2.1 滑動模式控制原理 40 3.2.2 滑動模式理論基礎 41 3.3 模糊滑動模式控制 44 第四章 實驗結果 47 4.1 平衡控制實驗 48 4.1.1 實驗說明 48 4.1.2 實驗參數 49 4.1.3 FSMC平衡控制器實驗結果 50 4.1.4 實驗結果討論 53 4.2 兩輪同步控制器 55 4.2.1 實驗說明 55 4.2.2 實驗參數 55 4.2.3 FSMC兩輪同步控制器實驗結果 56 4.2.4 實驗結果討論 60 4.3 輪車前進速度控制器 63 4.3.1 實驗說明 63 4.3.2 實驗參數 63 4.3.3 FSMC速度控制器實驗結果(V=0.2 m/sec) 65 4.3.4 FSMC速度控制器實驗結果(V=0.3 m/sec) 69 4.3.5 實驗結果討論 73 4.4 位置控制實驗 74 4.4.1 實驗說明 74 4.4.2 實驗參數 74 4.4.3 FSMC位置控制實驗結果(P=1 m) 76 4.4.4 FSMC位置控制實驗結果(P=2 m) 80 4.4.5 實驗結果討論 83 4.5 手把轉向測試 86 4.5.1 實驗說明 86 4.5.2 實驗結果 86 4.5.3 實驗結果討論 90 第五章 結論與未來展望 93 5.1 結論 93 5.2 未來展望 93 參考文獻 94

    【1】 S. Mori, H. Nishihara, and K. Furuta, “Control of unstable mechanical system control of pendulum,” Int. J. Control, Vol. 23. No. 5, pp. 673-692, 1976.
    【2】 T. Ishida, N. Shiokawa, T. Nagado, and S. Ganeko, “Learning control of an inverted pendulum using a neural network,” Conference of IEEE on Industrial Electronics, Control and Instrumentation, Vol. 2, pp. 1401-4, 1991.
    【3】 Y. Ha, and S. Yuta, “ Trajectory Tracking Control for Navigation of Self-Contained Mobile Inverse Pendulum,” IEEE/RSJ/GJ Int. Conf Advanced Robotic Systems and the Real World, Munich, Germany, Vol. 3, pp. 12-16, September 1994.
    【4】 J. C. Lo, and Y. H. Kuo, “Decoupled Fuzzy Sliding Mode Control,” IEEE Trans. on Fuzzy Systems, Vol. 6, No. 3, pp. 426-435, 1998.
    【5】 S. J. Huang, and C. L. Huang, “Control of an Inverted Pendulum Using Grey Prediction Model,” IEEE Transactions on Industry Applications, Vol. 36, No. 2, pp. 452-458, 2000.
    【6】 F. Grasser, A. D’Arrigo, S. Colombi, A. C. Rufer, “ JOE: a mobile, inverted pendulum,” IEEE Transactions on Industrial Electronics, Vol. 49, 2002.
    【7】 M. Sasaki, N. Yanagihara, O. Matsumoto, K. Komoriya, “Steering control of the personal riding-type wheeled mobile platform (PMP),” IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.
    【8】 K. Pathak, J. Franch, S.K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on Robotics, Vol. 21, 2005.
    【9】 S. J. Huang, and K. C. Chiou, “An Adaptive Fuzzy Controller for 1/2 Vehicle Active Suspension Systems,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, 2006.
    【10】 C. H. Chiu, and Y. F. Peng, “Design and Implementation of the self-dynamic Controller for Two-Wheel Transporter,” IEEE International Conference on Fuzzy Systems, 2006.
    【11】 T. J. Ren, T. C. Chen, and C. J. Chen, “Motion control for a two-wheeled vehicle using a self-tuning PID controller.” Control Engineering Practice, pp. 365-375, 2007.
    【12】 H. J. Lee, and Seul Jung, “Control of a mobile inverted pendulum robot system,” ICCAS International Conference on Control, Automation and Systems, 2008.
    【13】 W. Li, H, Ding, and K, Cheng, “An Investigation on the Design and Performance Assessment of double-PID and LQR Controllers for the Inverted pendulum,” UKACC International Conference on Control, Cardiff, United Kingdom, pp.190-196, September 2012.
    【14】 Segway of West Texas, “i2 Models,” Retrieved July 1, 2015, from http://www.segwaytexaswest.com/i2%20Models.htm
    【15】 Segway’s P.U.M.A., Retrieved July 1, 2015,from http://www.segway.com/puma/
    【16】 台灣歐姆龍工業自動化, “E6C2-C-旋轉編碼器,” Retrieved July 1, 2015, from http://www.omron.com.tw/product_detail_data.asp?
    ID=520&CLASS_ID=200&LEVEL=2&CLASS_LEVEL=2&Menu=1
    【17】 SparkFun Electronics, “Triple Axis Accelerometer Breakout - MMA7361,” Retrieved July 1, 2015, from https://www.sparkfun.com/
    products/9652
    【18】 SparkFun Electronics, “Gyro Breakout Board - LPY503AL Dual 30°/s,” Retrieved July 1, 2015, from https://www.sparkfun.com/products/11341
    【19】 G. Bishop ,and G. Welch, “An Introduction to the Kalman Filter,” ACM SIGGRAPH Conference, Los Angeles, USA, pp. 1-47, 2001.
    【20】 SparkFun Electronics, “XBee 1mW Wire Antenna - Series 1 (802.15.4),” Retrieved July 1, 2015, from https://www.sparkfun.com/products/8665
    【21】 B2BFOO, “Electric Bicycle Wheel Hub Motor,” Retrieved July 1, 2015, from http://shengp1985.en.b2bfoo.com/products/226646/
    Electric-Bicycle-Wheel-Hub-Motor.html
    【22】 普特企業有限公司-飆機器人, “Arduino Nano-328微處理器,” Retrieved July 1, 2015, from http://www.playrobot.com/cart
    /mycart.php?cheak=y
    【23】 The Custom Geek , Retrieved July 1, 2015, from http://thecustomgeek.com/wp-content/uploads/2012/09/328sm.jpeg
    【24】 Atmel Corporation, “ATMEGA328P datasheet,” Figure 15-1, October 2009.
    【25】 International Rectifier, “IR2104-DataSheet,” No. PD60046-S,p1,2004.
    【26】 International Rectifier, “Design Tip 98-02,” figure 1,2001.
    【27】 J. J. E. Slotine, and W. Li, “Applied Nonlinear Control,” Prentice-Hall, 1991.
    【28】 J. J. Gonzalez, and G. R. Widmann, “Force commanded impedance control scheme for robots with hard nonlinearities,” IEEE Transactions on Control System Technology, Vol. 3, No. 4, pp. 398-408, 1995.
    【29】 R. J. Anderson, and M. W. Spong, “Jybrid impedance control of robotic manipulators,” IEEE Transactions on Robotics and Automation, Vol. 4, No. 5, pp. 549-556, 1988.
    【30】 G. Ferretti, Magnani, and P. Rocco, “Toward the Implementation of Hybrid Position﹙Force Control in Industrial Robots,” IEEE Transactions on Robotics and Automation, Vol. 13, No. 6, December 1997.
    【31】 G. Ferretti, G. A. Magnani, and P. Rocco, “Impedance control for elastic joints industrial manipulators,” IEEE Transactions on Robotics and Automation, Vol. 20, No. 3, pp.488-498, 2004.
    【32】 游喬焜, “以系統晶片結合力量感測器發展具有力量控制功能之機械手臂,” 碩士論文,國立台灣科技大學機械工程研究所,2009.
    【33】 R. R. Yager, and D. P. Filev, “Essentials of fuzzy modeling and control,” John Wiley and Sons, New York, 1994.
    【34】 S. Y. Yi, and M. J. Chung, “Robustness of Fuzzy Logic Control for an Uncertain Dynamic System,” IEEE Transactions on Fuzzy Systems, Vol. 6, No. 2, pp. 216-225, May 1998.
    【35】 洪祥富, “雙輪倒單擺設計與穩定控制,” 碩士論文, 國立台灣技技大學機械工程系, 2013.

    QR CODE