簡易檢索 / 詳目顯示

研究生: 陳緯揚
Wei-Yang CHEN
論文名稱: 氮含量對ZrTiNbSiFeNx高熵合金薄膜機械性質和高溫氧化性質評估
Effects of nitrogen contents on the mechanical properties and oxidation resistance evaluation of ZrTiNbSiFeNx high entropy alloy coatings
指導教授: 郭俞麟
Yu-Lin Kuo
李志偉
Jyh-Wei Lee
口試委員: 邱六合
Liu-ho Chiu
何羽健
YU-JIAN HE
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 110
中文關鍵詞: ZrTiNbSiFeN高熵合金薄膜機械性質高溫氧化
外文關鍵詞: ZrTiNbSiFeN, high-entropy alloy films, mechanical properties, high-temperature oxidation
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來由於高熵合金具有高硬度與良好的熱穩定性等各種優異性能,因此引起了學術研究界和工業界的廣泛關注,其中ZrTiNbSiFe 高熵合金薄膜更是擁有良好熱穩定性。本研究使用高功率脈衝磁控濺射 (HiPIMS) 系統,改變不同的氮氣流量比例,在矽晶片與304不銹鋼表面鍍製六種不同氮含量的 ZrTiNbSiFeNx 高熵合金薄膜。本研究以場發射電子探針顯微儀檢定各薄膜的化學成分。以X光繞射儀與TEM穿透式電子顯微鏡分析各薄膜的晶體結構,由場發射掃描式電子顯微鏡觀察各薄膜的橫截面形貌,採用納米壓痕儀、刮痕測試儀和膜耗儀分別研究各 HEAN 薄膜的硬度、附著力和摩擦學性能並將鍍製於Si基板之ZrTiNbSiFeNx高熵合金薄膜進行在空氣環境下1000oC持溫12hr的高溫氧化測試,由熱重分析儀測試各薄膜之重量變化,由實驗結果得知,各薄膜具有良好熱穩定性,本研究將探討不同氮含量對ZrTiNbSiFeNx 高熵合金薄膜的微結構與熱穩定性的影響。成分分析中氮氣流量由0 sccm增加至9sccm隨著氮氣,氮含量相應從0增加到58.2 at.%。 在含氮薄膜中,所有元素的含量隨著氮含量的增加而減少。計算ZrTiNbSiFeN及ZrTiNbSiFeNx 高熵薄膜混和熵皆大於或接近高熵合金定義1.5R。利用XRD低掠角模式進行高熵薄膜晶體結構分析。可以看到除了N2呈現ZrN cubic (B1 NaCl)結構,未含氮與不同氮含量的薄膜皆呈現單一的寬廣繞射峰。透過TEM可以看到N0電子繞射圖為奈米晶結構,之後,隨著氮含量增加至23.6 at% 繞射圖有明顯變寬,當氮含量增加至33.8 at%時可以明顯看到 (111)、(200)繞射環,之後隨著氮含量增加至48.1 at%氮含量趨於飽和,轉變為無序非晶結構。
橫截面分析。可以看到薄膜皆為緻密結構,在製成時間相同的情況下薄膜厚度隨著氮含量的增加而減少鍍率由未通氮15.8 nm/min/kw降低至8.7nm/min/kw。
未通氮高熵薄膜硬度僅10.9 GPa,隨著氮含量的增加,晶體結構由非晶轉變為N2氮含量33.8 at%時呈現ZrN (cubic),因結晶產生晶界,晶界可以阻止差排滑移使其具有較高的硬度,之後由於結構轉變為非晶結構且氮含量趨於飽和使硬度下降13至14 Gpa之間。透過對高溫氧化實驗後的橫截面分析發現產生連續且緻密的氧化層 XRD分析得知氧化層以ZrO2為主,N3高熵氮化物薄膜在1000oC 持溫12hr表現出好熱穩定性其Kp斜率常數比N0低10倍, 這表示氮提高了抗氧化性。


In recent years, due to the exceptional properties such as high hardness and good thermal stability exhibited by high-entropy alloys, they have attracted extensive attention from both the academic research community and the industrial sector. Among them, ZrTiNbSiFe high-entropy alloy thin films are known for their excellent thermal stability. This study utilized a High-Power Impulse Magnetron Sputtering (HiPIMS) system to deposit six different ZrTiNbSiFeNx high-entropy alloy thin films with varying nitrogen content ratios on silicon wafers and 304 stainless steel surfaces. The chemical composition of each film was examined using Field Emission Electron Probe Microanalysis. The crystal structure of the films was analyzed using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), while the cross-sectional morphology of the films was observed using Field Emission Scanning Electron Microscopy (FESEM). The hardness, adhesion, and tribological properties of the HEAN films were investigated using a Nanoindentation Tester, Scratch Tester, and Tribometer, respectively.
Furthermore, ZrTiNbSiFeNx high-entropy alloy thin films deposited on Si substrates were subjected to high-temperature oxidation testing at 1000°C in an air environment for 12 hours. The weight changes of the films were measured using Thermogravimetric Analysis (TGA). The experimental results revealed that all the films exhibited excellent thermal stability. This study aims to explore the effects of different nitrogen contents on the microstructure and thermal stability of ZrTiNbSiFeNx high-entropy alloy films.In the composition analysis, the nitrogen flow rate increased from 0 sccm to 9 sccm, resulting in a corresponding increase in nitrogen content from 0 to 58.2 at.%. In the nitrogen-containing films, the content of all elements decreased with increasing nitrogen content. The mixing entropy of both ZrTiNbSiFeN and ZrTiNbSiFeNx high-entropy films was greater than or close to the defined value of 1.5R for high-entropy alloys. Crystal structure analysis of the high-entropy films was conducted using XRD with low-angle mode. Apart from N2, which exhibited a ZrN cubic (B1 NaCl) structure, films without nitrogen and those with different nitrogen contents showed a single broad diffraction peak. TEM analysis revealed that the electron diffraction pattern of the N0 film exhibited a nanocrystalline structure. As the nitrogen content increased to 23.6 at%, the diffraction pattern broadened significantly, and at 33.8 at% nitrogen content, distinct (111) and (200) diffraction rings became visible. Subsequently, as the nitrogen content increased to 48.1 at%, nitrogen saturation occurred, resulting in a transition to an amorphous structure.Cross-sectional analysis showed that all films had a dense structure, and under the same deposition time, film thickness decreased with increasing nitrogen content, and the deposition rate dropped from 15.8 nm/min/kW to 8.7 nm/min/kW for films deposited without nitrogen. The hardness of the high-entropy films without nitrogen was only 10.9 GPa. With increasing nitrogen content, the crystal structure transitioned from amorphous to ZrN cubic at 33.8 at% nitrogen content, resulting in the formation of grain boundaries which hindered dislocation slip and increased the hardness. However, as the structure transitioned back to an amorphous state with nitrogen content approaching saturation, the hardness decreased to a range of 13 to 14 GPa. Cross-sectional analysis following high-temperature oxidation experiments revealed the formation of a continuous and dense oxide layer primarily composed of ZrO2. The N3 high-entropy nitride film exhibited good thermal stability at 1000°C for 12 hours, with a Kp slope constant ten times lower than that of N0, indicating that nitrogen enhanced oxidation resistance.

第一章緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 高熵合金 3 2.2 高熵合金四大效應 5 2.2.1 高熵效應 5 2.2.2 嚴重晶格扭曲效應 7 2.2.3 遲緩擴散效應 10 2.2.4 雞尾酒效應 11 2.3 脈衝磁控反應式濺鍍 12 2.3.1 濺鍍原理 12 2.3.2 反應性濺鍍 15 2.4 脈衝直流磁控濺鍍 16 2.5 高功率脈衝磁控濺鍍 18 2.6 薄膜特性 19 2.6.1 HIPIMS與DCMS的差異 19 2.7 氮化高熵薄膜 21 2.8 氮含量對高熵合金薄膜之影響 22 2.8.1 結構表現 22 2.8.2 機械性質 25 2.8.3 熱穩定性 28 第三章 實驗方法與步驟 32 3.1 試驗制備 32 3.2 實驗方法 33 3.2.1 實驗流程與參數 33 3.3 分析儀器 37 3.3.1 成分分析 37 3.3.2 微結構分析 38 3.3.3 晶相結構分析 39 3.3.4 硬度與楊氏係數分析 41 3.3.5 刮痕附著力分析 43 3.3.6 磨耗試驗 44 3.3.7 磨耗體積與磨耗率分析 46 3.3.8 抗腐蝕性質分析 47 3.3.9 高溫抗氧化分析 49 第四章 結果與討論 51 4.1 成分分析 51 4.2 截面結構分析 51 4.3 晶體結構分析 54 4.4 TEM結構分析 55 4.5 硬度與楊氏係數分析 59 4.6 附著性分析 60 4.7 磨耗及磨耗率分析 62 4.8 抗腐蝕分析 65 4.9 高溫氧化測試 68 4.9.1 高溫氧化試驗後表面形貌分析 71 4.9.2 高溫氧化試驗後橫截面形貌分析 76 4.9.3 高溫氧化試驗後晶體結構分析 82 第五章 結論 85 參考文獻 87

[1] “Non-crystalline Structure in Solidified Gold–Silicon Alloys,” Non-crystalline Struct. Solidified Gold–Silicon Alloy., 1960.
[2] B.Cantor, I. T. H.Chang, P.Knight, andA. J. B.Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A, vol. 375–377, no. 1-2 SPEC. ISS., pp. 213–218, Jul.2004, doi: 10.1016/J.MSEA.2003.10.257.
[3] Y.Zhang, Y. J.Zhou, J. P.Lin, G. L.Chen, andP. K.Liaw, “Solid-Solution Phase Formation Rules for Multi-component Alloys,” Adv. Eng. Mater., vol. 10, no. 6, pp. 534–538, Jun.2008, doi: https://doi.org/10.1002/adem.200700240.
[4] S.Guo, C.Ng, J.Lu, andC. T.Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys,” J. Appl. Phys., vol. 109, no. 10, p. 103505, May2011, doi: 10.1063/1.3587228.
[5] Z.Tang, T.Yuan, C. W.Tsai, J. W.Yeh, C. D.Lundin, andP. K.Liaw, “Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy,” Acta Mater., vol. 99, pp. 247–258, Oct.2015, doi: 10.1016/J.ACTAMAT.2015.07.004.
[6] S. qinXia, Z.Wang, T. feiYang, andY.Zhang, “Irradiation Behavior in High Entropy Alloys,” J. Iron Steel Res. Int., vol. 22, no. 10, pp. 879–884, Oct.2015, doi: 10.1016/S1006-706X(15)30084-4.
[7] S. M.Chiu et al., “Investigation of phase constitution and stability of gas-atomized Al0.5CoCrFeNi2 high-entropy alloy powders,” Mater. Chem. Phys., vol. 275, p. 125194, Jan.2022, doi: 10.1016/J.MATCHEMPHYS.2021.125194.
[8] Z.Tang et al., “Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems,” JOM, vol. 65, no. 12, pp. 1848–1858, 2013, doi: 10.1007/s11837-013-0776-z.
[9] D. B.Miracle andO. N.Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., vol. 122, pp. 448–511, Jan.2017, doi: 10.1016/J.ACTAMAT.2016.08.081.
[10] J.-W.Yeh et al., “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes,” Adv. Eng. Mater., vol. 6, no. 5, pp. 299–303, May2004, doi: https://doi.org/10.1002/adem.200300567.
[11] Y.Zhang, “microstructures and properties of high entropy alloys,” Prog. Mater. Sci., vol. 61, pp. 1–93, Apr.2014.
[12] J. W.Yeh, “Recent progress in high-entropy alloys,” Ann. Chim. Sci. des Mater., vol. 31, no. 6, pp. 633–648, 2006, [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:38042167
[13] J.Li, X.Yang, R.Zhu, andY.Zhang, “Corrosion and Serration Behaviors of TiZr0.5NbCr0.5VxMoy High Entropy Alloys in Aqueous Environments,” Metals, vol. 4, no. 4. pp. 597–608, 2014. doi: 10.3390/met4040597.
[14] M. Z.Hussain et al., “Effect of Ti-Hf-Zr-Cu-Ni high entropy alloy addition on laser beam welded joint of Ti2AlNb based intermetallic alloy,” J. Mater. Sci. Technol., vol. 120, pp. 214–226, Sep.2022, doi: 10.1016/J.JMST.2021.12.036.
[15] & L.Gaskell, D.R., Introduction to the Thermodynamics of Materials, Sixth Edition. CRC Press, 2017. doi: 10.1201/9781315119038.
[16] D. G. R.William D. Callister Jr., Materials Science and Engineering: An Introduction, 10th Edition.
[17] and E.What Is the Difference Between FCC and BCC? (Crystal Structure, Properties, Interstitial Sites, “No Title,” Brandon.
[18] S. G.Rao, Phase formation in multicomponent films based on 3d transition metals, Linköping. Linköping University Electronic Press, 2021.
[19] Callister, Materials Science and Engineering SI 9/e, John Wiley.
[20] S.Ranganathan, “Alloyed pleasures: Multimetallic cocktails,” 2003.
[21] M.-H.Tsai andJ.-W.Yeh, “High-Entropy Alloys: A Critical Review,” Mater. Res. Lett., vol. 2, no. 3, pp. 107–123, Jul.2014, doi: 10.1080/21663831.2014.912690.
[22] J. A.Thornton, “Structure-Zone Models Of Thin Films,” in Proc.SPIE, Feb. 1988, pp. 95–105. doi: 10.1117/12.941846.
[23] A.Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films, vol. 518, no. 15, pp. 4087–4090, May2010, doi: 10.1016/J.TSF.2009.10.145.
[24] J.Musil, P.Baroch, J.Vlček, K. H.Nam, andJ. G.Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films, vol. 475, no. 1–2, pp. 208–218, Mar.2005, doi: 10.1016/J.TSF.2004.07.041.
[25] L. B.Jonsson, T.Nyberg, I.Katardjiev, andS.Berg, “Frequency response in pulsed DC reactive sputtering processes,” Thin Solid Films, vol. 365, no. 1, pp. 43–48, Apr.2000, doi: 10.1016/S0040-6090(99)01116-5.
[26] K.Sarakinos, J.Alami, andS.Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coatings Technol., vol. 204, no. 11, pp. 1661–1684, Feb.2010, doi: 10.1016/J.SURFCOAT.2009.11.013.
[27] P. M. (EDT)Martin, “Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology”.
[28] N.Bönninghoff et al., “ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering,” Surf. Coatings Technol., vol. 412, p. 127029, Apr.2021, doi: 10.1016/J.SURFCOAT.2021.127029.
[29] J.Kitagawa, K.Hoshi, Y.Kawasaki, R.Koga, Y.Mizuguchi, andT.Nishizaki, “Superconductivity and hardness of the equiatomic high-entropy alloy HfMoNbTiZr,” J. Alloys Compd., vol. 924, p. 166473, Nov.2022, doi: 10.1016/J.JALLCOM.2022.166473.
[30] H.Li, N.Jiang, J.Li, J.Huang, J.Kong, andD.Xiong, “Hard and tough (NbTaMoW)Nx high entropy nitride films with sub-stoichiometric nitrogen,” J. Alloys Compd., vol. 889, p. 161713, 2021, doi: https://doi.org/10.1016/j.jallcom.2021.161713.
[31] X.Lu et al., “Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV)Nx high-entropy nitride coatings in aviation lubricant,” Ceram. Int., vol. 47, no. 19, pp. 27342–27350, Oct.2021, doi: 10.1016/J.CERAMINT.2021.06.156.
[32] A.Kirnbauer et al., “Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides,” Surf. Coatings Technol., vol. 389, p. 125674, May2020, doi: 10.1016/J.SURFCOAT.2020.125674.
[33] Q.-W.Xing, S.-Q.Xia, X.-H.Yan, andY.Zhang, “Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures,” J. Mater. Res., vol. 33, no. 19, pp. 3347–3354, 2018, doi: 10.1557/jmr.2018.337.
[34] W. J.Shen et al., “Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride,” J. Electrochem. Soc., vol. 160, no. 11, p. C531, 2013, doi: 10.1149/2.028311jes.
[35] H.-T.Hsueh, W.-J.Shen, M.-H.Tsai, andJ.-W.Yeh, “Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx,” Surf. Coatings Technol., vol. 206, no. 19, pp. 4106–4112, 2012, doi: https://doi.org/10.1016/j.surfcoat.2012.03.096.
[36] K.vonFieandt et al., “Multi-component (Al,Cr,Nb,Y,Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance,” Thin Solid Films, vol. 693, p. 137685, Jan.2020, doi: 10.1016/J.TSF.2019.137685.
[37] T. K.Chen, T. T.Shun, J. W.Yeh, andM. S.Wong, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering,” Surf. Coatings Technol., vol. 188–189, pp. 193–200, 2004, doi: https://doi.org/10.1016/j.surfcoat.2004.08.023.
[38] J.Li, Y.Chen, Y.Zhao, X.Shi, S.wang, andS.Zhang, “Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings,” J. Alloys Compd., vol. 926, p. 166807, Dec.2022, doi: 10.1016/J.JALLCOM.2022.166807.
[39] C. H.Lai, S. J.Lin, J. W.Yeh, andS. Y.Chang, “Preparation and characterization of AlCrTaTiZr multi-element nitride coatings,” Surf. Coatings Technol., vol. 201, no. 6, pp. 3275–3280, Dec.2006, doi: 10.1016/J.SURFCOAT.2006.06.048.
[40] J.-W.Yeh, “Alloy Design Strategies and Future Trends in High-Entropy Alloys,” JOM, vol. 65, no. 12, pp. 1759–1771, 2013, doi: 10.1007/s11837-013-0761-6.
[41] A.Leyland andA.Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour,” Wear, vol. 246, no. 1–2, pp. 1–11, Nov.2000, doi: 10.1016/S0043-1648(00)00488-9.
[42] Y.Zhao et al., “A strategy to construct long-range fullerene-like nanostructure in amorphous carbon film with improved toughness and carrying capacity,” J. Phys. D. Appl. Phys., vol. 53, no. 33, p. 335205, 2020, doi: 10.1088/1361-6463/ab8bff.
[43] J.Musil, F.Kunc, H.Zeman, andH.Poláková, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings,” Surf. Coatings Technol., vol. 154, no. 2, pp. 304–313, 2002, doi: https://doi.org/10.1016/S0257-8972(01)01714-5.
[44] C.Sha, Z.Zhou, Z.Xie, andP.Munroe, “FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance,” Appl. Surf. Sci., vol. 507, p. 145101, 2020, doi: https://doi.org/10.1016/j.apsusc.2019.145101.
[45] D. E. T.Shepherd andK. D.Dearn, “Wear processes in polymer implants,” Durab. Reliab. Med. Polym., pp. 143–163, 2012, doi: 10.1533/9780857096517.2.143.
[46] W.-J.Shen, M.-H.Tsai, andJ.-W.Yeh, “Machining Performance of Sputter-Deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride Coatings,” Coatings, vol. 5, no. 3. pp. 312–325, 2015. doi: 10.3390/coatings5030312.
[47] S. W. L. B.William Henry Bragg, X-rays and Crystal Structure. G. Bell and Sons, Limited, 1915 - 228 頁.
[48] M.Wittling, A.Bendavid, P. J.Martin, andM.VSwain, “Influence of thickness and substrate on the hardness and deformation of TiN films,” Thin Solid Films, vol. 270, no. 1, pp. 283–288, 1995, doi: https://doi.org/10.1016/0040-6090(95)06839-2.
[49] W. C.Oliver andG. M.Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 6, pp. 1564–1583, 1992, doi: 10.1557/JMR.1992.1564.
[50] J.Blažek, J.Musil, P.Stupka, R.Čerstvý, andJ.Houška, “Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron,” Appl. Surf. Sci., vol. 258, no. 5, pp. 1762–1767, 2011, doi: https://doi.org/10.1016/j.apsusc.2011.10.039.
[51] S. T.Gonczy andN.Randall, “An ASTM Standard for Quantitative Scratch Adhesion Testing of Thin, Hard Ceramic Coatings,” Int. J. Appl. Ceram. Technol., vol. 2, no. 5, pp. 422–428, Sep.2005, doi: https://doi.org/10.1111/j.1744-7402.2005.02043.x.
[52] B.Lenz, H.Hasselbruch, H.Großmann, andA.Mehner, “Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings,” Surf. Coatings Technol., vol. 393, p. 125764, 2020, doi: https://doi.org/10.1016/j.surfcoat.2020.125764.
[53] R.Zdero, L. E.Guenther, andT. C.Gascoyne, “Pin-on-Disk Wear Testing of Biomaterials used for Total Joint Replacements,” Exp. Methods Orthop. Biomech., pp. 299–311, 2017, doi: 10.1016/B978-0-12-803802-4.00019-6.
[54] K.Cui, Q.Liu, X.Huang, H.Zhang, andL.Li, “Scanning error detection and compensation algorithm for white-light interferometry,” Opt. Lasers Eng., vol. 148, p. 106768, Jan.2022, doi: 10.1016/J.OPTLASENG.2021.106768.
[55] C.Hu, X.Liu, W.Yang, W.Lu, N.Yu, andS.Chang, “Improved zero-order fringe positioning algorithms in white light interference based atomic force microscopy,” Opt. Lasers Eng., vol. 100, pp. 71–76, 2018, doi: https://doi.org/10.1016/j.optlaseng.2017.07.010.
[56] C.Andrade andC.Alonso, “Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method,” Mater. Struct., vol. 37, no. 9, pp. 623–643, 2004, doi: 10.1007/BF02483292.
[57] J.-J.Wang andF.-Y.Ouyang, “Oxidation behavior of Al-Cr-Nb-Si-Zr high entropy nitride thin films at 850 °C,” Corros. Sci., vol. 187, p. 109467, 2021, doi: https://doi.org/10.1016/j.corsci.2021.109467.
[58] G. F.Cerofolini, G.LaBruna, andL.Meda, “Anomalous oxygen diffusivity and the early stages of silicon oxidation,” in European Materials Research Society Symposia Proceedings, A.BORGHESI, U. M.GÖSELE, J.VANHELLEMONT, M.DJAFARI-ROUHANI, andA. M. B. T.-C.GUÉ H,N and O in Si and Characterization and Simulation of Materials and Processes, Eds., Oxford: Elsevier, 1996, pp. 104–107. doi: https://doi.org/10.1016/B978-0-444-82413-4.50028-7.
[59] B.-S.Lou, Y.-C.Chang, andJ.-W.Lee, “High Temperature Oxidation Behaviors of CrNx and Cr-Si-N Thin Films at 1000 °C,” Coatings, vol. 9, no. 9. 2019. doi: 10.3390/coatings9090540.
[60] R. S.Mason andM.Pichilingi, “Sputtering in a glow discharge ion source-pressure dependence: theory and experiment,” J. Phys. D. Appl. Phys., vol. 27, no. 11, p. 2363, Nov.1994, doi: 10.1088/0022-3727/27/11/017.
[61] C.-E.Tsai, J.Hung, Y.Hu, D.-Y.Wang, R. M.Pilliar, andR.Wang, “Improving fretting corrosion resistance of CoCrMo alloy with TiSiN and ZrN coatings for orthopedic applications,” J. Mech. Behav. Biomed. Mater., vol. 114, p. 104233, 2021, doi: https://doi.org/10.1016/j.jmbbm.2020.104233.
[62] I. A.Saladukhin et al., “Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering,” Thin Solid Films, vol. 581, pp. 25–31, 2015, doi: https://doi.org/10.1016/j.tsf.2014.11.020.
[63] H. S.Vanegas P, S.Calderon V, J. E.Alfonso O, J. J.Olaya F, P. J.Ferreira, andS.Carvalho, “Influence of silicon on the microstructure and the chemical properties of nanostructured ZrN-Si coatings deposited by means of pulsed-DC reactive magnetron sputtering,” Appl. Surf. Sci., vol. 481, pp. 1249–1259, 2019, doi: https://doi.org/10.1016/j.apsusc.2019.03.128.
[64] C.-W.Tsai et al., “Strong amorphization of high-entropy AlBCrSiTi nitride film,” Thin Solid Films, vol. 520, no. 7, pp. 2613–2618, 2012, doi: https://doi.org/10.1016/j.tsf.2011.11.025.
[65] A. M.Huntz, “Stresses in NiO, Cr2O3 and Al2O3 oxide scales,” Mater. Sci. Eng. A, vol. 201, no. 1, pp. 211–228, 1995, doi: https://doi.org/10.1016/0921-5093(94)09747-X.
[66] F.Yang, D.-N.Fang, andB.Liu, “A theoretical model and phase field simulation on the evolution of interface roughness in the oxidation process,” Model. Simul. Mater. Sci. Eng., vol. 20, no. 1, p. 15001, 2012, doi: 10.1088/0965-0393/20/1/015001.
[67] H. E.Evans andR. C.Lobb, “Conditions for the initiation of oxide-scale cracking and spallation,” Corros. Sci., vol. 24, no. 3, pp. 209–222, 1984, doi: https://doi.org/10.1016/0010-938X(84)90051-9.
[68] A. G.Evans andJ. W.Hutchinson, “On the mechanics of delamination and spalling in compressed films,” Int. J. Solids Struct., vol. 20, no. 5, pp. 455–466, 1984, doi: https://doi.org/10.1016/0020-7683(84)90012-X.
[69] Ihsan Barin andGregor Platzki, “Therrnochernical Data of Pure Substances Third Edition,”

無法下載圖示
全文公開日期 2028/08/24 (校外網路)
全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE