簡易檢索 / 詳目顯示

研究生: 陳光宇
Guang-Yu Chen
論文名稱: 透輝石相玻璃陶瓷微波介電特性改善研究—添加陶瓷粉體與電極共燒
Improvement of microwave dielectric properties of diopside-based glass-ceramics employing ceramic doping and electrode co-firing process
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 陳士勛
Shih-Hsun Chen
馮奎智
Kuei-Chih Feng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 銀電極共燒銅電極共燒低介電常數高品質因子趨近於零的共振頻率溫度係數微波介電透輝石相玻璃陶瓷
外文關鍵詞: silver electrode co-firing, copper electrode co-firing, low dielectric constant, high quality factor, low resonance frequency temperature coefficient, microwave dielectric, diopside-based glass-ceramic
相關次數: 點閱:327下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討微波介電材料-透輝石相玻璃陶瓷(diopside, CaMgSi2O6)介電特性與電極匹配;透輝石相材料具有低介電常數(dielectric constant, k)、低成本、高品質因子(quality factor, Q*f)及900℃左右之燒結溫度,因此透輝石相玻璃陶瓷具有發展低溫共燒技術(LTCC, Low Temperature Co-fired Ceramic)之潛力;然而透輝石相不具有趨近於零的共振頻率溫度係數(temperature coefficient of resonance frequency,τf),因此選擇MgTiO3陶瓷粉末添加進透輝石相,因燒結時的溫度產生置換反應生成CaTiO3和Mg2SiO4,前者補償了共振溫度頻率係數,後者提升了品質因子;此外,添加具有高品質因子之化合物(Zn(1-x)Mgx)2SiO4可提高結晶度和品質因子;接下來將改質後之透輝石材料系統於大氣下與電極(銀與銅)共燒,並探討共燒後之電極擴散之影響並進行抑制,也預期此材料系統可於還原氣氛下和電極進行共燒。
本論文第一部分添加ZnO進入透輝石相玻璃陶瓷,其使透輝石相玻璃陶瓷系統有抗還原的效果,且產生二次相Zn2SiO4和Mg2SiO4此二次相具有219,000和240,000 GHz之高品質因子,而後續於820℃~960℃進行熱處理,實驗結果發現,當840℃時具有明顯的品質因子提升,由7153提升至8163 GHz;且在SEM-EDS發現二次相Zn2SiO4和Mg2SiO4以塊狀分佈在透輝石相玻璃陶瓷中。其第二部分為在透輝石相玻璃陶瓷分別添加8wt%陶瓷粉體MgTiO3和8wt% (Zn0.6Mg0.4)2SiO4和兩者同時添加。在透輝石相玻璃陶瓷添加(Zn0.6Mg0.4)2SiO4可提升整體品質因子,後續於820℃~960℃進行熱處理,由實驗結果發現,當840℃同樣因超過透輝石相玻璃陶瓷的成核成長溫度有明顯的品質因子提升,且在熱處理溫度隨之提升,Zn2SiO4比例降低,Mg2SiO4提升,在熱處理940℃持溫兩小時後得到最佳特性為K:7.133, Q*f:8893GHz, τf:-72ppm/℃。另一方面,在透輝石相玻璃陶瓷添加8wt%陶瓷粉體MgTiO3,在820~900℃熱處理並無法燒結緻密,造成品質因子不佳,由Mapping和XRD可觀察到產生二次相CaTiO3和ZnTiO3修正共振溫度頻率係數。其介電特性為K:7.813, Q*f:7186, τf:-50ppm/℃。
電極擴散會影響元件之工作頻率及效率,而銀離子在燒結過程氧化後與玻璃鍵結且往透輝石相玻璃陶瓷基材擴散;因此添加陶瓷粉體MgTiO3和(Zn0.6Mg0.4)2SiO4抑制電極擴散,MgTiO3可均勻分布在透輝石玻璃陶瓷中且顆粒小,並有效阻隔銀離子繼續往基材擴散,效果比添加(Zn0.6Mg0.4)2SiO4更佳。
此外,銅電極膠易與共燒基材產生反應,進而影響介電特性,透輝石相玻璃陶瓷在960℃之還原氣氛下與銅共燒,由XRD分析可觀察到微小的二次相Ca2CuO3峰值,但也生成能提升品質因子的二次相Mg2SiO4,在Mapping觀察下銅並無明顯擴散進入基材。


This study focuses on a novel microwave dielectric material - diopside (CaMgSi2O6) glass-ceramic. Diopside material has a unique character of low dielectric constant (k), low cost, high quality factor (Qxf value) and lower than 900℃ sintering temperature. Therefore, diopside is a potential candidate material for LTCC (Low Temperature Co-fired Ceramic) process. However, the negative temperature coefficient of resonance frequency (τf) is too large to be applied in microwave dielectric components. In this case, MgTiO3 was chosen to compensate the large negative temperature coefficient of resonance frequency (τf) of diopside glass-ceramics. The as-sintered specimens consist of Mg2SiO4 and CaTiO3, which result in high quality factor and an improved temperature coefficient of resonant frequency, because the Mg2SiO4 and CaTiO3 possess ultra-high Qxf and positive τf characteristics, respectively. In addition, the addition of (Zn(1-x)Mgx)2SiO4 improves crystallinity and quality factor. Followed by this result, the microstructure analysis and electrode inhibition after co-fired with silver and copper electrode were carried out by SEM-EDS in this work. In addition, It appears that this material system can be co-fired with a copper electrode under a reducing atmosphere.
In the first part, in order to improve the sintering characteristic of diopside in reducing atmosphere, the addition of ZnO was carried out. The secondary phase Zn2SiO4 with a quality factor of 219,000 GHz is produced. Optimum processing temperature and microstructural development were investigated using heat treatment conditions of annealing from 820℃ to 960℃ for 2hrs. It has a significant quality factor improvement at 840℃, from 7153 to 8163 GHz. In addition, it was found in SEM-EDS that Zn2SiO4 and Mg2SiO4 were revealed in the diopside phase glass ceramics. The second part is to add 8wt% ceramic powder of MgTiO3 and/or 8wt% (Zn0.6Mg0.4)2SiO4 in diopside phase glass ceramics. Adding (Zn0.6Mg0.4)2SiO4 to the diopside phase glass ceramic can improve the quality factor of the dielectric material. We investigate the optimal annealing temperature and microstructures after the specimens were heat treated at a temperature from 820℃ to 960℃ for 2hrs. When 840℃/2hr was adopted, the material gains a significant quality factor increase due to nucleation and growth of the diopside phase glass phase ceramics. After heat treatment at 940℃/2hr, the best dielectrical properties of the material are K:7.133, Qxf: 8893 GHz, τf: -72 ppm /℃. In addition, 8 wt% of the ceramic powder MgTiO3 was added in the diopside phase glass ceramics, and processed at 820 to 900℃ and we observed the densities of the specimens were low. Materials need to be processed at temperatures higher than 900℃ to acquire better properties. From the X-ray mapping and structural analysis, it was observed that secondary phases CaTiO3 and ZnTiO3 was produced. Its best dielectric properties are K:7.813, Qxf: 7186, τf: -50ppm/℃.
Electrode diffusion affects the operating frequency and efficiency of the component, and silver ions are oxidized in the sintering process to bond with the glass and diffuse to the diopside glass ceramic substrate, and therefore degrading material properties. We thus add ceramic powders MgTiO3 and (Zn0.6Mg0.4)2SiO4 to suppress elemental diffusion of electrode materials. MgTiO3 can be evenly distributed in the diopside glass ceramics and the particles are small, and effectively block the diffusion of silver ions to the substrate, the effect is better than adding (Zn0.6Mg0.4)2SiO4. In addition, the copper easily reacts with the co-firing substrate. The diopside phase glass ceramic was co-fired with copper under a reducing atmosphere of 960 ° C, and the secondary phase of Ca2CuO3 was observed by XRD analysis, but the secondary phase of Mg2SiO4 that can improve the quality factor. There was no significant diffusion of copper into the substrate under the mapping observation.

目錄 摘要 I Abstract III 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 4 2-1微波介電材料特性與原理 4 2-1-1介電常數 5 2-1-2品質因子 7 2-1-3共振頻率溫度係數 9 2-2微波介電材料系統發展與開發 10 2-2-1高溫共燒陶瓷系統之微波介電材料 10 2-2-2低溫共燒陶瓷系統之微波介電材料 12 2-3透輝石相玻璃陶瓷材料系統設計 13 2-4玻璃陶瓷製程與成長機制 15 2-4-1玻璃陶瓷之製程 15 2-4-2成核機制 16 2-4-3結晶成長機制 19 2-5常用電極種類與特性 20 第三章 實驗流程與分析方法 21 3-1實驗程序 21 3-2實驗儀器與規格 28 3-3材料性質檢測手法 28 3-3-1 XRD分析 28 3-3-2 SEM微觀分析 29 3-3-3 品質因子與介電常數測量 30 第四章 實驗結果與討論 32 4-1透輝石相玻璃陶瓷添加ZnO之分析結果 32 4-1-1透輝石相玻璃陶瓷添加不同ZnO比例之電性與XRD分析 32 4-1-2透輝石相玻璃陶瓷添加ZnO在不同熱處理溫度之分析 34 4-2透輝石相添加陶瓷粉體之特性研究 40 4-2-1添加(Zn0.6Mg0.4)2SiO4陶瓷粉體之分析結果 40 4-2-2添加MgTiO3陶瓷粉體之分析結果 46 4-2-3添加 (Zn0.6Mg0.4)2SiO4和MgTiO3陶瓷粉體之分析結果 56 4-3透輝石相玻璃陶瓷添加陶瓷粉體與電極共燒之特性研究 60 4-3-1銀膠與銅膠之TGA分析 61 4-3-2透輝石相玻璃陶瓷添加陶瓷粉末之微結構 62 4-3-3透輝石相玻璃陶瓷添加陶瓷粉體與銀電極共燒之微觀結構 64 4-3-4透輝石相玻璃陶瓷與銅電極共燒之微觀結構 67 第五章 結論 70 第六章 參考文獻 73 圖目錄 圖2- 1電磁波能譜圖及頻率應用[1] 4 圖2- 2不同極化機制與頻率之關係 7 圖2- 3在介電材料上施加電壓時,極化之強度及電荷量和時間關係 8 圖2- 4為電容器充電時的相位關係圖 9 圖2- 5 SiO2-CaO-MgO之三元相圖[41] 15 圖2- 6玻璃陶瓷製程、(b)玻璃陶瓷淬火與時間關係、(c)玻璃陶瓷成核速率與溫度關係 [44] 16 圖2- 7成核及結晶成長速率與溫度的關係圖[45] 20 圖3- 1透輝石相玻璃陶瓷製備及在不同溫度燒結之實驗流程 23 圖3- 2輝石相玻璃陶瓷添加陶瓷粉體在不同溫度燒結之實驗流程 25 圖3- 3透輝石相玻璃陶瓷添加陶瓷粉體與電極共燒之實驗流程 27 圖3- 4 Bruker D2 Phaser 29 圖3- 5樣品鍍白金機(左)與電子顯微鏡機台(右) 29 圖3- 6圓柱型共振量測夾具之示意圖 30 圖3- 7圓柱型共振量模具 31 圖4- 1透輝石相玻璃陶瓷添加4mol%ZnO在960℃/2hr之XRD分析[47] 33 圖4- 2透輝石相玻璃陶瓷添加x mol% ZnO經960℃/2hr之電性分析[47] 33 圖4- 3透輝石相玻璃陶瓷添加4mol% ZnO經不同熱處理溫度持溫兩小時之XRD (A)960℃:20~30o (B)960℃:29~38o分析 35 圖4- 4透輝石相玻璃陶瓷添加4mol% ZnO經不同熱處理溫度持溫兩小時之介電性質分析 36 圖4- 5透輝石玻璃融塊進行DTA(熱差分析儀)分析[50] 36 圖4- 6透輝石相玻璃陶瓷於850℃熱處理持溫不同時間的XRD繞射圖譜[50] 37 圖4- 7透輝石相玻璃陶瓷添加ZnO熱處理之SEM-EDS成分及微觀結構分析 38 圖4- 8 39 圖4- 9 Zn2SiO4與Mg2SiO4相圖[52] 41 圖4- 10(ZnxMg1-x)2SiO4陶瓷(x=0~1.0) XRD分析 [53] 41 圖4- 11(ZnxMg1-x)2SiO4經大氣下1250℃/2hr熱處理之介電特性 [55] 42 圖4- 12透輝石相玻璃陶瓷添加x wt% (Zn0.6Mg0.4)2SiO4經960℃/2hr熱處理之介電特性[55] 42 圖4- 13透輝石相玻璃陶瓷添加8wt% (Zn0.6Mg0.4)2SiO4之SEM-BEI微觀結構 43 圖4- 14透輝石相玻璃陶瓷添加8wt% (Zn0.6Mg0.4)2SiO4經不同熱處理溫度持溫兩小時之XRD (A)20~29o (B)29~40o分析 44 圖4- 15透輝石相玻璃陶瓷添加8wt% (Zn0.6Mg0.4)2SiO4經不同熱處理溫度持溫兩小時之介電性質分析 45 圖4- 16透輝石相玻璃陶瓷添加不同比例的MgTiO3經950℃燒結持溫兩小時之XRD分析[56] 47 圖4- 17透輝石相玻璃陶瓷添加不同比例的MgTiO3經950℃燒結持溫兩小時之密度與介電特性分析[56] 47 圖4- 18透輝石相玻璃陶瓷添加8wt% MgTiO3經900℃持溫兩小時之SEM-EDS元素分析及微結構 49 圖4- 19透輝石相玻璃陶瓷添加8wt% MgTiO3經900℃持溫兩小時之Mapping元素分析 50 圖4- 20透輝石相玻璃陶瓷添加8wt% MgTiO3經960℃持溫兩小時之Mapping元素分析 51 圖4- 21透輝石相玻璃陶瓷添加8wt% MgTiO3經不同熱處理溫度持溫兩小時之SEM微觀分析 52 圖4- 22 MgTiO3之XRD分析 53 圖4- 23透輝石相玻璃陶瓷添加8wt% MgTiO3經不同燒結溫度持溫兩小時之XRD (A)29~38o (B)48~65o分析 54 圖4- 24透輝石相玻璃陶瓷添加8wt% MgTiO3經不同燒結溫度持溫兩小時之介電性質分析 55 圖4- 25透輝石相玻璃陶瓷添加8wt% MgTiO3和8wt% (Zn0.6Mg0.4)2SiO4經不同熱處理溫度持溫兩小時之SEM微觀分析 57 圖4- 26透輝石相玻璃陶瓷添加8wt% MgTiO3和8wt% (Zn0.6Mg0.4)2SiO4經900℃持溫兩小時之SEM-EDS元素分析 58 圖4- 27透輝石相玻璃陶瓷添加8wt% MgTiO3和8wt% (Zn0.6Mg0.4)2SiO4經不同熱處理溫度持溫兩小時之XRD分析 59 圖4- 28透輝石相玻璃陶瓷添加8wt% MgTiO3和8wt% (Zn0.6Mg0.4)2SiO4經不同熱處理溫度持溫兩小時之介電性質分析 59 圖4- 29銀膠TGA分析 61 圖4- 30銅膠TGA分析 61 圖4- 31透輝石相玻璃陶瓷與銀共燒之剖面Mapping分析[64] 62 圖4- 32透輝石相玻璃陶瓷添加不同陶瓷粉體經900℃持溫兩小時之SEM微觀結構比較 63 圖4- 33透輝石相玻璃陶瓷無添加(左)和添加8wt% (Zn0.6Mg0.4)2SiO4(右)與銀膠於900℃共燒之SEM微觀結構比較 64 圖4- 34透輝石相玻璃陶瓷添加8wt% (Zn0.6Mg0.4)2SiO4(左)和添加8wt% MgTiO3(右)與銀膠於900℃共燒共燒之SEM微觀結構比較 64 圖4- 35透輝石相玻璃陶瓷添加8wt% (Zn0.6Mg0.4)2SiO4與銀膠於900℃共燒持溫兩小時之Mapping元素分析 65 圖4- 36透輝石相玻璃陶瓷添加8wt% MgTiO3與銀膠於900℃共燒持溫兩小時之Mapping元素分析 66 圖4- 37透輝石相玻璃陶瓷與銅膠於還原氣氛下960℃共燒持溫兩小時之XRD分析 67 圖4- 38透輝石相玻璃陶瓷與銅膠於還原氣氛下960℃共燒持溫兩小時之SEM-EDS元素分析和微結構 68 圖4- 39透輝石相玻璃陶瓷與銅膠於還原氣氛下960℃共燒持溫兩小時之Mapping元素分析 69 表目錄 表2- 1四種不同極化機制關係 6 表2- 2不同極化機制與頻率之關係 6 表2- 3共振頻率溫度係數證明公式及關係 10 表2- 4低介電常數矽酸鹽、鉬酸鹽、鎢酸鹽類微波介電陶瓷材料 11 表2- 5低介電常數鎂鈣矽系統微波介電陶瓷材料 12 表2- 6常見商用電極系統[46] 20 表3- 1使用藥品規格與來源廠商 22 表3- 2各種使用儀器來源與規格 28 表4- 1透輝石相玻璃陶瓷添加ZnO熱處理之SEM-EDS成分分析(A區)(B區)(C區) 38 表4- 2透輝石相玻璃陶瓷添加8wt% MgTiO3經900℃持溫兩小時之SEM-EDS元素分析(A區) (B區) 49 表4- 3透輝石相玻璃陶瓷添加8wt% MgTiO3和8wt% (Zn0.6Mg0.4)2SiO4經900℃持溫兩小時之SEM-EDS元素分析(A區)(B區)(C區) 58 表4- 4各種內電極之比較 60 表4- 5透輝石相玻璃陶瓷與銅膠於還原氣氛下960℃共燒持溫兩小時之SEM-EDS元素分析(A區) (B區) 68

第六章 參考文獻
1. 張存續, 材料與微波之頻率響應與反應特性, 工業材料雜誌, 93年12月216期.
2. R. D. Richtmyer, Dielectric Resonator. Japanese Journal of Applied Physics., 10, 391-398, 1939.
3. A. Okaya, The Rutile Microwave Resonator. Proceeding of the IRE., 48, 1921, 1960.
4. H. M. O. Bryan, J. Thomson, and J. K. Plourde, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 450-453, 1974.
5. S. H. Kim, D. W. Cho, S. Y. Hong, and K. S. Yoon, Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system. Journal of the European Ceramic Society., 23, 2549-2552, 2003.
6. X. M. Chen, Y. H. Sun, and X. H. Zheng, High permittivity and low loss dielectric ceramics in the BaO–La2O3–TiO2–Ta2O5 system. Journal of the European Ceramic Society., 23, 1571-1575, 2003.
7. C. L. Pan, C. L. Shium, and S. J. Huang, Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics. Materials Chemistry and Physics., 78, 111-115, 2003.
8. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975.
9. 李俊遠, GPS微波介電材料與GPS天線設計概念, 電子與材料雜誌第14期, 第 102至108頁, 2002年.
10. S. X. Dai, R. F. Huang, and D. L.Wilcox, Use of Titanates to Achieve a Temperature-Stable Low-Temperature Cofired Ceramic Dielectric for Wireless Applications. Journal of American Ceramic Society., 85, 828–832, 2002.
11. H. Ohsato, S. Nishigaki, and T. Okuda, Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd and Sm) Microwave Dielectric Compounds. Japanese Journal Applied Physics., 31, 3136-3138, 1992
12. K. Wakino, K. Minai, and H. Tamura, Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators. Journal of the American Ceramic Society., 67, 278-281, 1984.
13. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, and S. Jinga, Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics. Romanian Journal of Information Science and Technology., 10, 261-268, 2007.
14. M. Takata, and K. Kageyama, Microwave Characteristics of A(B1/23+ B1/25+ )O3 Ceramics. Journal of American Ceramic Society., 72, 1955-1959, 1990.
15. R. R. Tummala, Ceramic and glass–ceramic packaging in the 1990s. Journal of American Ceramic Society., 74, 895–908, 1991.
16. N. Sakamoto, T. Motoki, and H. Sano, U. S. Pat.No. 6233134, 2001.
17. T. Joseph, and M. T. Sebastian, Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca). Materials Letters., 65, 891-893, 2011.
18. T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. Journal of the European Ceramic Society., 26, 2097-2100, 2006.
19. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society., 27, 3063-3067, 2007.
20. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and S. Nomura, BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. Journal of American Ceramic Society., 71, C11-C17, 1988.
21. S. H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society., 26, 2051-2054, 2006.
22. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics. Key Engineer Materials., 269, 199–202, 2004.
23. M. E. Song, J. S. Kim, M. R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. Journal of American Ceramic Society., 91, 2747-2750, 2008.
24. Q. L. Zhang, H. Yang, and H. P. Sun, A new microwave ceramic with low-permittivity for LTCC applications. Journal of the European Ceramic Society., 28, 605–609, 2008.
25. H. P. Wang, Q. L. Zhang, H. Yang, and H. P. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceramics International., 34, 1405-1408, 2008.
26. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, and S.Nahm, Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics. Journal of the European Ceramic Society., 30, 375-379, 2010.
27. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, and H. J. Kim, Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics. Journal of the European Ceramic Society., 23, 2413–2416, 2003.
28. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics. Journal of American Ceramic Society., 93, 2132-2135, 2010.
29. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, and J. M. Heintz, Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites. Journal of Magnetism and Magnetic Materials., 312, 328-330, 2007.
30. S. F. Wang, T. C. K. Yang, Y. R. Wang, and Y. Kuromitsu, Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic. Ceramics International., 27, 157-162, 2001.
31. Q. L. Zhang, H. Yang, and J. X. Tong, Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5. Material Letters., 60, 1188-1191, 2006.
32. M. Ohsahi, H. Ogawa, A. Kan, and E. Tanaka, Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic. Journal of the European Ceramic Society., 25, 2877–2881, 2005.
33. J. S. Kim, J. C. Lee, C. I. Cheon, and C. H. Lee, International Symposium on Research reactor and neutron science., Daejeon, Korea, 2005, 682–685.
34. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. Journal of the European Ceramic Society., 25, 2865–2870, 2005.
35. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, and A. Kan, Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic. Journal of Alloys and Compounds., 424, 388-393, 2006.
36. H. Jantunen, A. Uusima ̈ki, R. Rautioaho, and S. Leppa ̈vuori, Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society., 20, 2331–2336, 2000.
37. N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. Journal of the European Ceramic Society., 26, 1925–1928, 2006.
38. C. Zhong, Y. Yuan, S. Zhang, Y. Pang, and B. Tang, Low-fired BiNbO4 microwave dielectric ceramics modified by CuV2O6 addition sintered in N2 atmosphere. Journal ceramics silikaty., 54, 103-107, 2010.
39. J. J. Jean, and Y. C. Fang, Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic. Journal of American Ceramic Society., 84, 1354–1360, 2001.
40. C. R. Chang, and J. J. Jean, Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics. Journal of American Ceramic Society., 82, 1725–1732, 1999.
41. P. Hudon, I. H. Jung, and D. R. Baker, Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa. Journal of Petrology., 46, 1859-1880, 2005.
42. G. H. Beall, Design and Properties of Glass-Ceramics. Annual Review Materials Science., 22, 91–119, 1992.
43. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程 (第三版),全華圖 書,1996.
44. 吳朗,電子陶瓷-絕緣陶瓷,全欣出版,中華民國 83 年。
45. B. J. Wood, and R. Trigila, Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chemical Geology., 172, 213-223, 2001.

46. 吳伯賢, 透輝石相玻璃陶瓷介電特性與銀電極共燒效應之研究,國立台灣科技大學碩士論文,中華民國106年
47. 劉賾銘 低介電之透輝石相玻璃陶瓷的合成及應用於LTCC氮氣製程下品質因子改善之研究 國立台灣科技大學碩士論文,中華民國100年
48. N.H.Nguyen, J.B.Lim,S.Nahm, Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric properties of Zn2SiO4 Ceramics J.Am.Ceram. Soc Vol.90 [10],pp.3127-3130,(2007).
49. A. Karamanov, M. Pelino “Induced crystallization porosity and properties of sintered diopside and wollastonite glass‐ceramics.” Journal of the European ceramic society, Vol.28, P. 555‐562, (2008)
50. 莊順傑, 二次熱處理與鈦酸鈣添加對透輝石玻璃陶瓷微波介電材料的燒結與特性影響, 國立台灣科技大學碩士論文, 中華民國101年.
51. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida and H.Sugiura, Key Engineering Materials.,“Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.” 269, 199-202, 2004.
52. E. R. Segnit and A. E. Holland, “The System MgO‐ZnO‐SiO2.” J. Am. Ceram. Soc., 48, 409-413, 1965.
53. X. M. Chen, K. X. Song and C. W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system.” Ceramics International., 34, 917-920, 2008.
54. 柳邦凱, 透輝石相玻璃陶瓷添加陶瓷粉體共燒之微波介電特性改善與研究, 國立台灣科技大學碩士論文, 中華民國102年.
55. 陳彥明 透輝石相玻璃陶瓷添加陶瓷粉體與銅電極共燒之微波介電特性改善之研究, 國立台灣科技大學碩士論文, 中華民國103年.
56. 馮奎智 具低介電新穎透輝石玻璃陶瓷微波材料之發展與特性研究 國立台灣科技大學博士論文, 中華民國102年.
57. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics., 91, 69-86, 1989.
58. K. X. Song, and X. M. Chen, Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Materials Letters., 62, 520-522, 2008.
59. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975.
60. M. T. Sebastian, Dielectric Materials for Microwave Communications. Elsevier Science Technology Publications, Oxford., United Kingdom, 2008.
61. Ahcéne Chaouchi1, Sadia Kennour1 et al., Low temperature sintered ZnTiO3 dielectric ceramics with temperature coefficient of dielectric constant near zero, Processing and Application of Ceramics 4 [2], 75–80, 2010.
62. S. Takeoka , Y. Mizuno, “Effect of Internal Electrode Materials in Multilayer Ceramic Capacitors on Electrical Properties.”, Japanese Journal of Applied Physics ., 50, 2011.
63. 李宜芝, BaO-B2O3-SiO2 玻璃添加ZnO對Ba-Ti-O微波介電陶瓷低溫製程微觀結構與介電特性之影響, 國立台灣科技大學碩士論文, 中華民國 98年.
64. 張俊堯, 透輝石相玻璃陶瓷低溫共燒擴散效應與高頻天線特性探討,國立台灣科技大學碩士論文,中華民國104年

QR CODE