簡易檢索 / 詳目顯示

研究生: 黃一峻
Yi-Jun Huang
論文名稱: 點陣列式微影系統中光學模組與動態掃描曝光模式之設計開發
Development of Photolithography System using Point Array of Exposure Technique
指導教授: 郭鴻飛
Hung-Fei Kuo
口試委員: 李貫銘
Kuan-Ming Li
郭永麟
Yong-Lin Kuo
楊振雄
Cheng-Hsiung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 數位光罩微影系統數位微反射鏡裝置無光罩微影點陣列式掃描
外文關鍵詞: digital mask lithography, digital micromirror device, maskless lithography, point array scanning
相關次數: 點閱:538下載:56
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的印刷電路板(printed circuit board, PCB)微影製程中,主要以具有光罩的鄰近式(proximity)或接觸式(contact)的曝光方式在光阻上進行曝光製程。然而,製作光罩往往花費許多時間以及製程成本,若製作完成的光罩有不平坦或缺陷時,會造成PCB曝光不良的問題。為了減少光罩在PCB微影製程中所產生的問題以及成本,因此近年來發展了無光罩微影技術,例如電子束微影(electronic beam, E-beam)、雷射直接成像(laser direct imaging, LDI)以及數位光罩微影(digital mask lithography)。本研究主要探討以數位微反射鏡裝置(digital micromirror device, DMD)作為數位光罩取代傳統實體光罩,然而在空間中調變波長405 nm雷射光束強度並且將光束反射在PCB光阻表面上。目前產業以DMD投影式微影系統可印出最小線寬與特徵圖案大約為30-50 μm,為了進一步提升曝光線寬解析度,本系統採用點陣列曝光模式,以DMD設計點陣列光罩,並透過光學模組中微透鏡陣列(microlens array, MLA)聚焦最佳解析度的光點陣列,並進行曝光測試且與掃描平台做結合,探討光點陣列曝光形成掃描線,並增加曝光解析度之討論。本研究已成功利用所開發的數位光罩微影光學系統,以一個微反射鏡對應一個像素之方式形成點陣列之DMD光罩,並且運用脈衝寬度調頻(pulse width modulation, PWM)操作DMD光罩之開啟時序,有效的達到曝光劑量之控制,並已利用DMD的數位光罩微影製程中得到10 μm的曝光線寬。


    In the conventional printed circuit board (PCB) lithography process, it often exposed the line pattern features on a resist-coated substrate in contact or proximity modes. The fabrication of photomask usually takes time and raises the overall running cost. The photomask also suffered the flatness issues during the lithography process and resulted in the low line pattern resolution. To eliminate the use of masks in the PCB lithography process, maskless lithography techniques have been developed in recent years such as the electronic beam (E-beam), laser direct imaging (LDI), and digital micromirror device (DMD) methods. The proposed method uses a digital micromirror device (DMD) to spatially modulate the beam intensity and reflect the beam at the wavelength of 405 nm onto a single photoresist layer. Currently, the minimum feature linewidth in the DMD-based digital maskless lithography system is between 30 and 50 μm. In order to improve the feature line width resolution in the PCB lithography process, this research is dedicated in designing an optical system with a H-line (405 nm) UV laser light source, projection optics, microlens array (MLA) and scanning stage. A point array scanning method is adapted for the exposure process. In addition, this research uses the pulse width modulation (PWM) technique to control DMD timing sequence for the pattern exposure. It is successfully exposure the line patterns with the 10 μm.

    致謝 I 摘要 II ABSTRACT III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 9 1.3 論文架構 10 第二章 點陣列式掃描微影技術 11 2.1 數位光罩微影技術介紹 11 2.2 點陣列式微影之光學系統 13 2.3 數位微反射鏡裝置之微影系統應用 16 2.4 結論 21 第三章 數位光罩微影系統之光學投影模組開發 22 3.1 數位光罩微影系統光學模組之設計 22 3.2 數位光罩微影系統光學模組之實現 35 3.3 靜態曝光測試 46 3.4 結論 51 第四章 最佳點陣列曝光模式之探討 52 4.1 點陣列曝光潛像分析 52 4.2 點陣列曝光方式實現 64 4.3 PWM控制點陣列之曝光測試 71 4.4 結論 75 第五章 結論 77 5.1 實驗結果討論與分析 77 5.2 本研究之貢獻 78 5.3 未來研究方向 78 參考文獻 79

    [1] H. Xiao, Introduction to semiconductor manufacturing technology: Prentice Hall Upper Saddle River, NJ, 2001.
    [2] W. Greig, Integrated circuit packaging, assembly and interconnections: trends and options: Springer Science & Business Media, 2007.
    [3] M. J. Madou, Fundamentals of microfabrication: the science of miniaturization: CRC press, 2002.
    [4] C. F. Coombs, Coombs' printed circuits handbook: McGraw-Hill Professional Publishing, 2001.
    [5] K. Jain, M. Klosner, M. Zemel, and S. Raghunandan, "Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production," Proceedings of the IEEE, vol. 93, no. 8, pp. 1500-1510, 2005.
    [6] T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature, vol. 406, no. 6799, pp. 1027-1031, 2000.
    [7] K. Mitzner, "Complete PCB design using OrCAD Capture and PCB editor," ed: Newnes, 2009.
    [8] C.-W. Li, J. Yang, C. H. Tzang, J. Zhao, and M. Yang, "Using thermally printed transparency as photomasks to generate microfluidic structures in PDMS material," Sensors and Actuators A: Physical, vol. 126, no. 2, pp. 463-468, 2006.
    [9] A. Wu, L. Wang, E. Jensen, R. Mathies, and B. Boser, "Modular integration of electronics and microfluidic systems using flexible printed circuit boards," Lab on a Chip, vol. 10, no. 4, pp. 519-521, 2010.
    [10] P. A. Hammond and D. R. S. Cumming, "Encapsulation of a liquid-sensing microchip using SU-8 photoresist," Microelectronic Engineering, vol. 73–74, pp. 893-897, 2004.
    [11] L. Guo and S. P. DeWeerth, "High‐Density Stretchable Electronics: Toward an Integrated Multilayer Composite," Advanced Materials, vol. 22, no. 36, pp. 4030-4033, 2010.
    [12] K. Stephan, P. Pittet, L. Renaud, P. Kleimann, P. Morin, N. Ouaini, et al., "Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures," Journal of Micromechanics and Microengineering, vol. 17, no. 10, pp. N69-N74, 2007.
    [13] 張文珊, "全球PCB產業結構解析," 台北:資策會MIC, pp. 1-3, 2013.
    [14] H. Wu, W. Hu, H.-c. Hu, X.-w. Lin, G. Zhu, J.-W. Choi, et al., "Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system," Optics Express, vol. 20, no. 15, pp. 16684-16689, 2012.
    [15] C. A. Rothenbach and M. C. Gupta, "High resolution, low cost laser lithography using a Blu-ray optical head assembly," Optics and Lasers in Engineering, vol. 50, no. 6, pp. 900-904, 2012.
    [16] T. Horiuchi, S. Koyama, and H. Kobayashi, "Simple maskless lithography tool with a desk-top size using a liquid-crystal-display projector," Microelectronic Engineering, vol. 141, pp. 37-43, 2015.
    [17] R. Barbucha, M. Tanski, and M. Kocik, "Multi-diode laser system for UV exposure of the photoresists," in SPIE 9520, Integrated Photonics: Materials, Devices, and Applications III, 2015, pp. 95200P-95200P-6.
    [18] M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, "Flexible, fast, and low-cost production process for polymer based diffractive optics," Optics Express, vol. 23, no. 3, pp. 3614-3622, 2015/02/09 2015.
    [19] E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, "High speed maskless lithography of printed circuit boards using digital micromirrors," in SPIE 7932, Emerging Digital Micromirror Device Based Systems and Applications III, 2011, pp. 793207-793207-14.
    [20] R. Barbucha, M. Kocik, J. Mizeraczyk, G. Kozioł, and J. Borecki, "Laser Direct Imaging of tracks on PCB covered with laser photoresist," TECHNICAL SCIENCES, vol. 56, no. 1, 2008.
    [21] M. Nowak, A. Antończak, P. Kozioł, and K. Abramski, "Laser prototyping of printed circuit boards," Opto-Electronics Review, vol. 21, no. 3, pp. 320-325, 2013.
    [22] A. Alwaidh, M. Sharp, and P. French, "Laser processing of rigid and flexible PCBs," Optics and Lasers in Engineering, vol. 58, pp. 109-113, 2014.
    [23] P.-Y. Cheng, W.-T. Hsiao, C.-K. Chung, S.-F. Tseng, and I.-C. Liao, "Laser direct imaging of transparent indium tin oxide electrodes using high speed stitching techniques," Optical Review, vol. 21, no. 5, pp. 732-735, 2014.
    [24] K. Ryoo, M. Kim, J. Sung, K. Kim, and M. Kang, "Maskless laser direct imaging lithography using a 355-nm UV light source in manufacturing of flexible fine dies," Journal of Mechanical Science and Technology, vol. 29, no. 1, pp. 365-370, 2015.
    [25] N. Koshida, A. Kojima, N. Ikegami, R. Suda, M. Yagi, J. Shirakashi, et al., "Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions," in SPIE 9423, Alternative Lithographic Technologies VII, 2015, pp. 942313-942313-7.
    [26] M. Erdmanis, P. Sievilä, A. Shah, N. Chekurov, V. Ovchinnikov, and I. Tittonen, "Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces," Nanotechnology, vol. 25, no. 33, pp. 335302-1-335302-7, 2014.
    [27] M. A. Imtaar, A. Yadav, A. Epping, M. Becherer, B. Fabel, J. Rezgani, et al., "Nanomagnet Fabrication Using Nanoimprint Lithography and Electrodeposition," Nanotechnology, IEEE Transactions on, vol. 12, no. 4, pp. 547-552, 2013.
    [28] D. Kattipparambil Rajan, J.-P. Raunio, M. T. Karjalainen, T. Ryynänen, and J. Lekkala, "Novel method for intensity correction using a simple maskless lithography device," Sensors and Actuators A: Physical, vol. 194, pp. 40-46, 2013.
    [29] X.-Y. Ding, Y.-X. Ren, and R.-D. Lu, "Maskless Microscopic Lithography through Shaping Ultraviolet Laser with Digital Micro-mirror Device," Optics and Photonics Journal, vol. 3, no. 2B, pp. 227-231, 2013.
    [30] J. Jang, S. Han, S. E. Chung, Y. J. Choi, and S. Kwon, "Development of conformal phosphor coating technique for light-emitting diodes using image-processing-based maskless lithography," Microelectronic Engineering, vol. 118, pp. 11-14, 2014.
    [31] M. M. Emami, F. Barazandeh, and F. Yaghmaie, "Scanning-projection based stereolithography: Method and structure," Sensors and Actuators A: Physical, vol. 218, pp. 116-124, 2014.
    [32] M. M. Emami, F. Barazandeh, and F. Yaghmaie, "An analytical model for scanning-projection based stereolithography," Journal of Materials Processing Technology, vol. 219, pp. 17-27, 2015.
    [33] K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, "High-resolution maskless lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 2, no. 4, pp. 331-339, 2003.
    [34] J. M. Florence and L. A. Yoder, "Display system architectures for digital micromirror device (DMD)-based projectors," in SPIE 2650, Projection Displays II, 1996, pp. 193-208.
    [35] G. Cirino, S. Lopera, A. Montagnoli, R. Mansano, and L. Neto, "Microlens array fabricated by gray-scale lithography maskless system," ECS Transactions, vol. 49, no. 1, pp. 339-345, 2012.
    [36] A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, "Maskless Projection Lithography for the Fast and Flexible Generation of Grayscale Protein Patterns," Small, vol. 8, no. 10, pp. 1570-1578, 2012.
    [37] K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, "Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD," Optics & Laser Technology, vol. 56, pp. 367-371, 2014.
    [38] Y.-K. Cho, T.-H. Han, S.-J. Ha, J.-W. Lee, J.-S. Kim, S.-M. Kim, et al., "Fabrication of passive micromixer using a digital micromirror device-based maskless lithography system," International Journal of Precision Engineering and Manufacturing, vol. 15 no. 7, pp. 1417-1422, 2014.
    [39] M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, "Microlens laser beam homogenizer: from theory to application," in SPIE 6663, Laser Beam Shaping VIII, 2007, pp. 666302-666302-13.
    [40] J.-W. Pan, C.-M. Wang, H.-C. Lan, W.-S. Sun, and J.-Y. Chang, "Homogenized LED-illumination using microlens arrays for a pocket-sized projector," Optics Express, vol. 15, no. 17, pp. 10483-10491, 2007.
    [41] A. Bich, J. Rieck, C. Dumouchel, S. Roth, K. J. Weible, M. Eisner, et al., "Multifunctional micro-optical elements for laser beam homogenizing and beam shaping," in SPIE 6879, Photon Processing in Microelectronics and Photonics VII, 2008, pp. 68790Q-68790Q-12.
    [42] F. Wippermann, U.-D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, "Beam homogenizers based on chirped microlens arrays," Optics Express, vol. 15, no. 10, pp. 6218-6231, 2007.
    [43] A. Bu¨ttner and U. D. Zeitner, "Wave optical analysis of light-emitting diode beam shaping using microlens arrays," Optical Engineering, vol. 41, no. 10, pp. 2393-2401, 2002.
    [44] I. Harder, M. Lano, N. Lindlein, and J. Schwider, "Homogenization and beam shaping with microlens arrays," in SPIE 5456, Photon Management, 2004, pp. 99-107.
    [45] S.-H. Song, K. Kim, S.-E. Choi, S. Han, H.-S. Lee, S. Kwon, et al., "Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication," Optics Letters, vol. 39, no. 17, pp. 5162-5165, 2014.
    [46] X. Ma, Y. Kato, Y. Hirai, F. van Kempen, F. van Keulen, T. Tsuchiya, et al., "Optimization methods for 3D lithography process utilizing DMD-based maskless grayscale photolithography system," in SPIE 9426, Optical Microlithography XXVIII, 2015, pp. 94260F-94260F-10.
    [47] G. A. Cirino, F. T. Amaral, S. A. Lopera, A. N. Montagnolil, A. Arruda, R. D. Mansano, et al., "Wavefront sensor sampling plane fabricated by maskless grayscale lithography," in SPIE 9130, Micro-Optics, 2014, pp. 91300C-91300C-6.
    [48] T. Okuyama and H. Washiyama, "Multi-exposure drawing method and apparatus therefor," ed: Google Patents, 2006.
    [49] J. Tamaki, M. Shibuya, and N. Suezou, "Analytical equation predicting the forbidden pattern pitch for phase-shifting mask," in Optical microlithography; XXVI Conference; 26th, Optical microlithography; XXVI, 2013, pp. 86832A-86832A-9.
    [50] A. S. Jariwala, R. E. Schwerzel, H. A. Nikoue, and D. W. Rosen, "Exposure controlled projection lithography for microlens fabrication," in SPIE 8249, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, 2012, pp. 824917-824917-13.
    [51] J.-Y. Hur and M.-S. Seo, "Optical Proximity Corrections for Digital Micromirror Device-based MasklessLithography," Journal of the Optical Society of Korea, vol. 16, no. 3, pp. 221-227, 2012.
    [52] L. H. Erdmann, A. Deparnay, F. Wirth, and R. Brunner, "MEMS-based lithography for the fabrication of micro-optical components," 2004, pp. 79-84.
    [53] M. V. Kessels, M. El Bouz, R. Pagan, and K. Heggarty, "Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 6, no. 3, pp. 033002-033002-12, 2007.
    [54] A. Sierakowski, P. Janus, D. Kopiec, K. Nieradka, K. Domanski, P. Grabiec, et al., "Optimization method of photolithography process by means of atomic force microscopy," in SPIE 8352, 28th European Mask and Lithography Conference, 2012, pp. 83520B-83520B-8.
    [55] P. Ph, A. W. Knoll, F. Holzner, and U. Duerig, "Field stitching in thermal probe lithography by means of surface roughness correlation," Nanotechnology, vol. 23, no. 38, pp. 385307-1-385307-8, 2012.
    [56] C. Tew, L. Hornbeck, J. Lin, E. Chiu, K. Kornher, J. Conner, et al., "Electronic control of a digital micromirror device for projection displays," in Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC., 1994 IEEE International, 1994, pp. 130-131.
    [57] B. Bhushan and H. Liu, "Characterization of nanomechanical and nanotribological properties of digital micromirror devices," Nanotechnology, vol. 15, no. 12, p. 1785, 2004.
    [58] X.-c. Han, Z.-f. Deng, Y.-l. Xue, Y.-q. Wang, L.-q. Cao, L. Han, et al., "Laser 3D imaging technology based on digital micromirror device and the performance analysis," in SPIE 9273, Optoelectronic Imaging and Multimedia Technology III, 2014, pp. 92731O-92731O-6.
    [59] E. Pruett, "Latest developments in Texas Instruments DLP near-infrared spectrometers enable the next generation of embedded compact, portable systems," in SPIE 9482, Next-Generation Spectroscopic Technologies VIII, 2015, pp. 94820C-94820C-8.
    [60] E. Pruett, "Techniques and applications of programmable spectral pattern coding in Texas Instruments DLP spectroscopy," in SPIE 9376, Emerging Digital Micromirror Device Based Systems and Applications VII, 2015, pp. 93760H-93760H-10.
    [61] T. I. Report, "Wavelength Transmittance Considerations for DLP® DMD Window," DLPA031C, 2014.
    [62] Z. Xiong, H. Liu, X. Tan, Z. Lu, C. Li, L. Song, et al., "Diffraction analysis of digital micromirror device in maskless photolithography system," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 13, no. 4, pp. 043016-043016, 2014.
    [63] C. Liu, X. Guo, F. Gao, B. Luo, X. Duan, J. Du, et al., "Imaging simulation of maskless lithography using a DMD," in SPIE 5645, Advanced Microlithography Technologies, 2005, pp. 307-314.
    [64] Y. Li, W. Yan, J. Wang, Y. Yang, and L. Zhao, "Methods of eliminating the grid effect based on DMD technique of maskless lithography," in SPIE 7657, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems, 2010, pp. 765716-765716-7.
    [65] D.-H. Lee, "Optical System with 4 μm Resolution for Maskless Lithography Using Digital Micromirror Device," Journal of the Optical Society of Korea, vol. 14, no. 3, pp. 266-276, 2010.
    [66] Z. Shi and Y. Gao, "Pixel-based partially coherent image method for maskless lithography system," Optik - International Journal for Light and Electron Optics, vol. 124, no. 18, pp. 3292-3295, 2013.
    [67] H. Ryoo, D. W. Kang, and J. W. Hahn, "Analysis of the line pattern width and exposure efficiency in maskless lithography using a digital micromirror device," Microelectronic Engineering, vol. 88, no. 10, pp. 3145-3149, 2011.
    [68] H. Ryoo, D. W. Kang, Y.-T. Song, and J. W. Hahn, "Experimental analysis of pattern line width in digital maskless lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, no. 2, pp. 023004-1-023004-6, 2012.
    [69] D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," in SPIE 4985, MOEMS Display and Imaging Systems, 2003, pp. 14-25.
    [70] X. Guo, M. Chen, J. Zhu, Y. Ma, J. Du, Y. Guo, et al., "Refractive microlensarray made of silver-halide sensitized gelatin (SHSG) etched by enzyme with SLM-based lithography," in SPIE 6032, ICO20: MEMS, MOEMS, and NEMS, 2006, pp. 60320K-60320K-10.
    [71] X. Guo and Y. Liu, "Improving the imaging quality of MOEs in DMD-based maskless lithography," Microelectronic Engineering, vol. 87, no. 5-8, pp. 1100-1103, 2010.
    [72] X. Guo, J. Du, Y. Guo, C. Du, Z. Cui, and J. Yao, "Simulation of DOE fabrication using DMD-based gray-tone lithography," Microelectronic Engineering, vol. 83, no. 4-9, pp. 1012-1016, 2006

    QR CODE