簡易檢索 / 詳目顯示

研究生: 黎閔哲
Min-Che Li
論文名稱: 即時檢測抗體及核酸適體於紫膜生物光電晶片上之固定化穩定性及開發大腸桿菌檢測晶片
Real-time monitoring the stability of antibodies and aptamers immobilized on purple menbrane-based photoelectric biochips and development Escherichia coli detection
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 林景堉
Ching-Yu Lin
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 137頁
中文關鍵詞: 抗體核酸適體紫膜光電晶片大腸桿菌
外文關鍵詞: antibodies, aptamers, purple menbrane, phoelectric biochips, Escherichia coli
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太古嗜鹽菌Halobacterium salinarum紫膜 (purple membrane, PM) 內具有獨特光敏感蛋白,被稱為細菌視紫質 (bacteriorhodopsin, BR)。由於BR受光後會使PM膜兩側產生質子梯度差而誘導光電流產生,且此光電流與入射光強度成正向關係,因此再利用菌體本身可散射光特性,本實驗室先前已分別開發以抗體及核酸適體為辨識分子的PM膜微生物感測器。本研究首先以連續注流式即時檢測系統延續探討抗體及aptamer被固定化於PM膜上及微生物被吸附於辨識分子上之穩定性,發現兩種辨識分子在10 μL/min低流速時均具有最佳穩定性;反之150 μL/min高流速時皆會被脫附於晶片表面,其次,分別被抗體及核酸適體辨識分子捕捉於PM膜晶片上之Escherichia coli K-12及Lactobacillus acidophilus兩種微生物,在100 μL/min 較高流速下也會完全脫離固定於PM晶片上之辨識分子,因此可藉由調高流速而使辨識分子-PM晶片再生利用。此外,在10 μL/min 低流速流場中辨識分子-PM晶片可連續檢測不同濃度之微生物體,研究中發現抗體-PM晶片測菌時所需平衡時間為30分鐘;核酸適體-PM晶片則只要5分鐘,都比原先靜態吸附檢測菌時需要反應兩小時更為迅速。再者,本研究也發現空白PM晶片在流場下所能承受之最大流速為2 mL/min,因此可再次藉由粉體及菌體之光遮蔽效應直接以空白PM晶片進行檢測。於250 μL /min高流速下,發現空白PM晶片能檢測到體積平均粒徑為45 μm Al2O3粉末之最低濃度為0.2 ppb;E. coli K-12能被檢測到的最低濃度為102 CFU/mL。最後,我們以E. coli核酸適體取代現有固定化在PM膜上之抗體辨識分子,先以模擬軟體探討其二級結構並選出最適化固定化與檢測條件,再分別對E. coli、L. acidophilus及Bacillus subtilis進行檢測,結果發現能檢測到E. coli之最低濃度為1 CFU/10 mL;然而對於106 CFU/mL L. acidophilus及Bacillus,此E. coli感測晶片仍分別有45 %及29 %因非特異性吸附所引起的光電流下降,因此未來需調整檢測條件,以提升其專一性。


Halobacterium salinarum purple membranes (PM) contain a unique light-sensitive protein called bacteriorhodopsin (BR). When BR is illuminated, a proton gradient is formed across PM, which drives photocurrent production. The generated photocurrent is linearly correlated with the illumination intensity; thus both antibody-PM and aptamer-PM composite sensors have previously been developed in this laboratory to detect microorganisms based on the fact that bacteria scatter light. In this study, a real-time flow-injection analysis system was employed to investigate the stability of the immobilized antibodies and aptamers as well as the captured bacteria on PM-coated chips in a shear flow. Both recognition molecules exhibited the best stability at 10 μL/min, while their dissociation from the chip surface was observed at 150 μL/min. In addition, Escherichia coli K-12 and Lactobacillus acidophilus cells captured by the antibody-PM and aptamer-PM sensor chips, respectively, were completely detached from their respective immobilized recognition molecules at 100 μL/min, suggesting the feasibility of regenerating either sensor chip simply by raising flow rates. Moreover, microorganisms at different concentrations were readily detected at 10 μL/min with only 5-min and 30-min equilibrium time observed upon each cell injection for the aptamer-PM and antibody-PM chips, respectively, which were significantly shorter than what was observed (2 h) in a static detection. The maximal flow rate for the bare PM chip to sustain its full photoelectric activity was 2 mL/min, so we subsequently employed the bare PM chip to directly detect microparticles and bacteria based on their light scattering effects. At 250 μL /min, the bare PM chips directly detected Al2O3 powders with a volume-based particle size of 45 μm with a detection limit of 0.2 ppb, and a limit of 102 CFU/mL for E. coli K-12 was obtained. Finally, an E. coli aptamer-PM sensor chip was prepared by first simulating the secondary structure of the E. coli aptamer for its optimal immobilization and detection conditions. The chip readily detected E. coli K-12 with a limit of 1 CFU/10 mL. However, the chip also exhibited 45 % and 29 % photocurrent reductions on the detection of 106 CFU/mL L. acidophilus and Bacillus subtilis, respectively, indicating nonspecific adsorption of both cells. More investigations of the detection condition will be conducted to improve the chip selectivity in the future.

中文摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 XII 第1章 緒論 1 第2章 文獻回顧 3 2-1 飲用水水質檢測 3 2-1-1 水質檢測標準與項目 3 2-1-2 Escherichia coli 簡介 7 2-1-3 飲用水及自來水中Escherichia coli 檢測方法 8 2-1-3-1 多管發酵法 (most probable number, MPN) 8 2-1-3-2 濾膜法 (membrane filter, MF) 9 2-1-3-3 酵素偵測法 (enzyme detection method, EDM) 9 2-1-3-4 生物晶片檢測法 (biosensor detection method, BDM) 10 2-2 生物分子相互作用分析技術 (BIAcore) 介紹 11 2-2-1 BIAcore系統於抗體晶片即時檢測之應用 13 2-3 細菌視紫質(bacteriorhodopsin, BR) 15 2-3-1 Halobacterium salinarum與BR 介紹 15 2-3-2 BR結構 17 2-3-3 BR光循環路徑 18 2-3-4 BR光電響應 20 2-3-5 PM於基材上之單層定向固定化 23 2-3-6 晶片的微生物檢測應用 25 第3章 實驗 27 3-1 實驗目的與說明 27 3-2 實驗流程與步驟 29 3-2-1 即時檢測PM晶片、辨識分子-PM複合晶片於穩定流場下吸附菌之實驗流程 29 3-2-2 E. coli核酸適體-PM晶片之非特異性吸附實驗流程 34 3-3 量測 36 3-3-1 Cuvette 系統之D1、D2 微分光電流量測 36 3-3-2 單層即時監測系統配合自動化訊號擷取器 37 3-3-3 倒立式螢光顯微鏡 (Olympus IX73) 操作 38 第4章 結果與討論 39 4-1 以連續注流式即時監測微流道系統中觀察L. acidophilus aptamer 於PM晶片表面上之穩定性探討 39 4-1-1 L. acidophilus aptamer-PM複合晶片於 10 μL/min 下之穩定性 44 4-2 以連續注流式即時監測微流道系統觀察L. acidophilus 於aptamer –PM複合晶片表面上之脫附性及再生性探討。 47 4-2-1 在低流速10 μL/min, L. acidophilus於L. acidophilus aptamer-PM複合晶片穩定性探討 52 4-2-2 在低流速10 μL/min,E. coli K-12於E. coli antibody-PM複合晶片穩定性探討 56 4-2-3 探討不同濃度之 L. acidophilus含菌電解液在穩定流場下吸附於L. acidophilus aptamer-PM複合晶片上的情形 60 4-2-4 探討不同濃度之 E. coli K-12含菌電解液在穩定流場下吸附在E. coli antibody-PM複合晶片上的情形 65 4-3 PM膜晶片之PM層最大流速探討 70 4-3-1 以固定250 μL/min的流速去測定不同濃度的Al2O3溶液流經PM晶片上的情形 74 4-3-2 以固定250 μL/min的流速去測定不同濃度的E. coli溶液流經PM晶片上的情形 79 4-4 E. coli aptamer 結構模擬 83 4-4-1 以Oligoanalyzer 3.1 模擬決定aptamer 固定化於PM晶片之反應條件 83 4-4-1-1 固定溫度下改變aptamer之固定化Na+濃度 83 4-4-1-2 固定Na+濃度下改變E. coli aptamer之固定化反應溫度 93 4-5 以Sulfo-SIAB為架橋固定化E. coli aptamer於PM晶片 102 4-5-1 E. coli aptamer-PM複合晶片之專一性探討 102

Balashov SP. Protonation reactions and their coupling in bacteriorhodopsin. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2000, 1460:75-94.

Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussmann M. Bio-microarray fabrication techniques—a review. Critical reviews in biotechnology. 2006, 26:237-259.

Chen HM, Jheng KR, Yu AD. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosens Bioelectron. 2017, 91:24-31.

Chen HM, Lin CJ, Jheng KR, Kosasih A, Chang JY. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf B Biointerfaces. 2014, 116:482-488.

Chung J, Kang JS, Jurng JS, Jung JH, Kim BC. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens Bioelectron. 2015, 67:303-308.

Cochran WG. Estimation of bacterial densities by means of the" most probable number". Biometrics. 1950, 6:105-116.

Grabow W, Du Preez M. Comparison of m-endo les, macconkey, and teepol media for membrane filtration counting of total coliform bacteria in water. Applied and environmental microbiology. 1979, 38:351-358.

Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews. 2000, 100:1755-1776.

Jin Y, Honig T, Ron I, Friedman N, Sheves M, Cahen D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews. 2008, 37:2422-2432.

Kandori H. Hydration switch model for the proton transfer in the schiff base region of bacteriorhodopsin. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2004, 1658:72-79.

Kawamura I, Ohmine M, Tanabe J, Tuzi S, Saitô H, Naito A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state nmr. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2007, 1768:3090-3097.

Malmqvist M. Biacore: An affinity biosensor system for characterization of biomolecular interactions. Journal. 1999, (Issue).

Manafi M New approaches for the fast detection of indicators, in particular enzyme detection methods (edm). In: OECD Workshop Molecular Methods for Safe Drinking Water, 1998. pp 1-16

Medina M, Van Houten L, Cooke P, Tu S. Real-time analysis of antibody binding interactions with immobilized e. Coli o157: H7 cells using the biacore. Biotechnology Techniques. 1997, 11:173-176.

Organization WH. Guidelines for drinking-water quality. Vol. 2, health criteria and other supporting information. 1996.

Peterson LAM. Characterization of escherichia coli enterohemolysin 1. 2007.

Wang J-P, Yoo S-K, Song L, El-Sayed MA. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B. 1997, 101:3420-3423.

Wang J. Vectorially oriented purple membrane: Characterization by photocurrent measurement and polarized-fourier transform infrared spectroscopy. Thin Solid Films. 2000, 379:224-229.

吳欣穎, 細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析, 國立台灣科技大學化學工程研究所碩士論文. 2015

陳冠辰, 適體-細菌視紫質生物光電感測晶片之探討, 國立台灣科技大學化學工程研究所碩士論文. 2015

鄭俊義, 紫膜生物光電晶片於牙斑菌檢測之應用, 國立台灣科技大學化學工程研究所碩士論文. 2016

林彥青, 細菌視紫質生物光電晶片二維掃描系統與訊號探討, 國立台灣科技大學化學工程研究所碩士論文. 2015

黃柏竣, 非特異性作用對親和吸附法製備細菌視紫質光電晶片之影響, 國立台灣科技大學化學工程研究所碩士論文. 2012

郭力彬, 紫膜生物光電晶片應用於糖化血紅素 (HbA1C)檢測之探討, 國立台灣科技大學化學工程研究所碩士論文. 2017

陳俊原, 紫膜生物光電晶片檢測牙斑菌之特異性與即時監測牙菌斑生長之探討, 國立台灣科技大學化學工程研究所碩士論文. 2017

無法下載圖示 全文公開日期 2023/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE