簡易檢索 / 詳目顯示

研究生: 許皓香
Hao-Hsiang Hsu
論文名稱: 熱濕氣候區中大型建築物之對流及浮力通風應用
Cross and Stack Ventilation Applications for Medium and Large Scale Buildings in Hot and Humid Climates
指導教授: 江維華
Wei-Hwa Chiang
口試委員: 何明錦
Ming-Chin Ho
彭雲宏
Yeng-Horng Perng
林怡均
Yi-Jiun Lin
黃建勝
Jian-Sheng Huang
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: CFD穿越式通風浮力通風置換式通風立面設計中庭設計
外文關鍵詞: CFD, cross ventilation, stack ventilation, displacement ventilation, facade design, atrium design
相關次數: 點閱:230下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於位處熱濕氣候區的台灣,有效的通風可維持室內良好熱舒適度,並帶走室內蓄積的熱與濕氣。本研究因此利用CFD檢視在熱溼氣候下,立面設計與中庭設計分別對於對流與浮力通風的影響。研究結果顯示,在運用穿越式通風於教室建築時,立面上的深構件可有效增加通風效益,其導風效果可改善迎風氣流不利室內舒適性的向上傾斜角度;在浮力通風於辦公大樓的應用,當利用辦公空間所洩漏的冷氣來間接冷卻公共空間,沿中庭設置的扶手設計可以有效地讓冷空氣留在公共空間而不致於流入中庭裡,熱源設定在站姿高度時,較低冷氣洩漏位置搭配高天花高度可使空間充分進行置換式通風,同步提昇室內舒適度與空調節能。


    Effective ventilation is helpful to remove heat and keep indoor comfortable. This study evaluated the effect of building facade and atrium design on cross and stack ventilation in hot and humid climates, using a sequence of CFD simulations. The result shows that when cross ventilation is applied in a typical school building, deep components on the windward facade can effectively direct incoming wind with declined angle toward the breathing zone and reduce mean age of air in the room. When stack ventilation is applied in an office building, cold air in office room can be utilized to cool public area. Handrails set up around atrium can keep cold air staying in public area longer to reduce temperature. Furthermore, larger ceiling height and the combination of heat source at standing height with lower SA location can enhance the efficiency of displacement ventilation to improve thermal comfort and reduce energy consumption.

    目錄 V 圖目錄 VII 表目錄 IX 第壹章 緒論 1 第貳章 建築立面設計對於穿越式通風之影響 5 一、 前言 5 二、 研究動機與流程 7 2-1 研究動機 7 2-2 研究流程 7 三、 研究方法 12 3-1 空氣品質指標 12 3-2 CFD 模型 13 四、 結果與討論 16 4-1 格點驗證 16 4-2 CFD模型驗證 16 4-3 開窗模式之影響 19 4-4 完整模型 21 4-5 走廊之影響 23 4-6 遮陽板之位置與深度影響 25 4-7 遮陽板縫隙之影響 26 4-8 百葉之影響 26 五、 小結 30 參考文獻 32 第參章 空調辦公大樓中庭設計對浮力通風之影響 37 一、 前言 37 二、 研究動機與流程 40 三、 研究方法 48 3-1 中性軸高度與流量 48 3-2 人員密度 48 3-3 發熱量 49 3-4 氣候條件 49 3-5 邊界條件 50 3-6 評估指標 50 四、 結果與討論 53 4-1 模型驗證 53 4-2 格點驗證 54 4-3 開啟外氣引入口時之外氣影響 54 4-4 關閉引入外氣開口之外氣條件影響 57 4-5 洩漏量高度影響 58 4-6 扶手高度與洩漏量位置之影響 60 4-7 熱源分佈、洩漏量位置與天花板高度之影響 63 五、 小結 67 第肆章 結論 71 附錄 73

    [1-1] Q. Chen, Ventilation performance prediction for buildings: A method overview and recent applications, Build. Environ. 2009; 44:848-858.
    [1-2] J.J. Kim, J.J. Baik, A numerical study of the effects of ambient wind direction on flow and dispersion in urban wind direction on flow and dispersion in urban street canyons using the RNG K-ε turbulence model, Atmos. Environ. 2005; 38:3039-3048.
    [1-3] A. Mochida, I.Y.F. Lun, Prediction of wind environment and thermal comfort at pedestrian level in urban area, J. Wind Eng. Ind. Aerodyn. 2008; 96:1498-1527.
    [1-4] J. Hang, M. Sandberg, Y. Li, Age of air and air exchange efficiency in idealized city models, Build. Environ. 2009; 44:1714-1723.
    [1-5] G. Evola, V. Popov, Computational analysis of wind driven natural ventilation in buildings, Energy Build. 2006; 38:491-501.
    [1-6] J.D. Posner, C.R. Buchanan, D.D. Rankin, Measurement and prediction of indoor airflow in a model room, Energy Build. 2003; 35:515-526.
    [1-7] T. Karimipanah, H.B. Awbi, M. Standberg, C. Blomqvist, Investigation of air quality, comfort parameters and effectiveness for two floor-level air supply systems in classrooms, Build. Environ. 2007; 42:547-655.
    [1-8] H.B. Awbi, Energy efficient room air distribution. Renew. Energy 1998; 15:293-299.
    [1-9] S.I. Tanabe, K. Kobayashi, J. Nakano, Y. Ozeki, M. Konishi, Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD), Energy Build. 2002; 34:637-646.
    [1-10] J.S. Russo, T.Q. Dang, H.E. Khalifa, Computational analysis of reduced-mixing personal ventilation jets, Build. Environ. 2009; 44:1559-1567.
    [1-11] S.H. Ho, L. Rosario, M.M. Rahman, Three-dimensional analysis for hospital operating room thermal comfort and contaminant removal, Appl. Therm. Eng. 2009; 29:2080-2092.
    [1-12] Y. Jiang, D. Alexander, H. Jenkins, R. Arthur, Q. Chen, Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large-eddy simulation, J. Wind Eng. Ind. Aerodyn. 2003; 91:331-353.
    [1-13] Hazim Awbi, Basic Concepts for Natural Ventilation of Buildings, , CIBSE BSG Seminar: Natural and Mixed-Mode Ventilation Modelling, 2010.
    [2-1] H.B. Awbi, Design considerations for naturally ventilated buildings, Renew. Energy. 1994; 5:1081-2090.
    [2-2] I.A. Raja, J.F. Nicol, K.J. McCartney, Natural ventilated buildings: use of controls for changing indoor climate, Renew. Energy. 1998; 15:191-934.
    [2-3] N.M. Guirguis, G.B. Hanna, M.F. Kotkata, I.A. Gad, An investigation of building/wind interaction, Renew. Energy. 1998; 15: 383-386.
    [2-4] S. Kato, S. Murakami, Takahashi, T. Gyobu, Chained analysis of wind tunnel test and CFD on cross ventilation of large-scale market building, J. Wind Eng. Ind. Aerodyn. 1997; 67-68:573-587.
    [2-5] V. Straaten, Thermal Performance of buildings, Elsevier, Amsterdam, 1967.
    [2-6] B.J. Vickery, C. Karakatsanis, External wind pressure distributions an induced internal ventilation flow in low-rise industrial and domestic structures, ASHARE Trans. 1982; 93:2198-2213.
    [2-7] G.C. Graca, Q. Chen, L.R. Glicksman, L.K. Norford, Simulation of wind-driven ventilation cooling systems for an apartment building in Beijing and Shanghai, Energy Build. 2002; 34:1-11.
    [2-8] J.Seifert, Y. Li, J. Axley, M. Rosler, Calculation of wind-driven cross ventilation in buildings with large openings, J. Wind Eng. Ind. Aerodyn. 2006; 94:925-947.
    [2-9] Z. Zhai, S.D. Hamilton, J. Huang, C. Allocca, N. Kobayashi, Q. Chen, Integration of indoor and outdoor airflow study for natural ventilation design using CFD, in: Proceeding 21st AIVC Annual Conference: Innovations in Ventilation Technology, The Hague, 2000.
    [2-10] S.S. Ayad, Computational study of natural ventilation, J. Wind Eng. Ind. Aerodyn. 1999; 82:49-68.
    [2-11] K. Visagavel, P.S.S. Srinivasan, Analysis of single side ventilated and cross ventilated rooms by varying the width of the window opening using CFD, Sol. Energy. 2009; 83:2-5.
    [2-12] E. Prianto, P. Depecker, Optimization of architectural design elements in tropical humid region with thermal comfort approach. Energy Build. 2003; 35:273-280.
    [2-13] W.H Chiang, C.J. Wu, K.Y. Weng, L.D. Yang, The effects of facade design on cross ventilation for Taiwanese classroom. ASHRAE Trans. 2005; 111:333- 339.
    [2-14] A.A Argiriou, C.A. Balaras, S.P. Lykoudis, Single-sided ventilation of buildings through shaded large openings, Energy. 2002; 27:93-115.
    [2-15] C.C. Hsu, T.K. Huang, The plane of module size for dwelling house and school building. Architecture and Building Research Institute, Ministry of the Interior, Taipei, 1991.
    [2-16] V. Olgyay, Design with climate, Van nostrand reinhold, New York, 1992.
    [2-17] ASHRAE, ASHRAE Handbook fundamentals, ASHRAE, Atlanta, 2005.
    [2-18] ASHRAE, ASHRAE Standard 62-1989: Ventilation for acceptable indoor air quality, Atlanta, 1989
    [2-19] ASHRAE, ASHRAE Handbook, ASHRAE, Atlanta, 2009.
    [2-20] V. Chanteloup, P.S. Mirade, Computational fluid dynamics modeling of mean age of air distribution in forced-ventilation food plants, J. Food Eng. 2009; 90:90-103.
    [2-21] X. Li, D. Li, X. Yang, J. Yang, Total air age: an extension of the air age concept. Build. Environ. 2003; 38:1263-1269.
    [2-22] D. Etheridge, M. Sandberg, Building ventilation theory and measurement, John wiley & sons, Chichester, 1996.
    [2-23] G. Gan, Effective depth of fresh air distribution in rooms with single-sided natural ventilation, Energy Build. 2000; 31:65-73.
    [2-24] H.B Awbi. Ventilation of buildings, 2nd edition, Spon Press, 2003.
    [2-25] J. Franke, A. Hellsten, H. Schlunzen, B. Carissimo, COST Action 732: Best practice guideline for the CFD simulation of flows in the urban environment, Cost, Hamburg, 2007.
    [2-26] Q. Chen, Prediction of room air motion by Reynolds-stress models, Build. Environ. 1996; 31:233-244.
    [2-27] Q. Chen, Comparison of different k-ε models for indoor airflow computations, Numer Heat Tranf. B-Fundam. 1995; 28:353-369.
    [2-28] G. Evola, V. Popov, Computational analysis of wind driven natural ventilation in buildings, Energy Build. 2006; 38:491-501.
    [2-29] J.D. Posner, C.R. Buchanan, D.D. Rankin, Measurement and prediction of indoor airflow in a model room, Energy Build. 2003; 35:515-526.
    [2-30] J.J. Kim, J.J. Baik, A numerical study of the effects of ambient wind direction on flow and dispersion in urban wind direction on flow and dispersion in urban street canyons using the RNG K-ε turbulence model, Atmos. Environ. 2005; 38:3039-3048.
    [2-31] P.J Richards, and S.E. Norris, Appropriate boundary conditions for computational wind engineering models revisited, J Wind Eng Ind Aerod.2011; 99: 257-266.
    [2-32] F. Allard, Natural ventilation in buildings: a design handbook, second ed., James & James, London, 2002.
    [2-33] PHEONICS 2009 (software package), FLAIR User’s Guide, CHAM Ltd., London, 2009.
    [2-34] Y. Tominaga, A. Mochida, R. Yoshie, H. Ktaoka, T. Nozu, M. Yoshikawa, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerod. 2008; 96: 1749-1761.
    [2-35] P.J Richards, R.P. Hoxey, Appropriate boundary conditions for computational wind engineering models using the k-εturbulence model, J Wind Eng Ind Aerod.1993; 46 & 47: 145-153.
    [2-36] G. Gan, H.B. Awbi, Numerical simulation of the indoor environment. Build. Environ. 1994; 29: 449-459.
    [2-37] B. Givoni. Man, Climate and Architecture, Van nostrand reinhold company, 1981.
    [2-38] M. Melaragno, Wind in Architectural and environmental design. Van Nostrand Reinhold, 1982.
    [2-39] G. Z. Brown and Mark Dekay, Sun, wind & light: architectural design strategies, 2nd edtion. John wiley & sons, inc, 2001.
    [2-40] A. M. Omer, Constructions, applications and the environment of greenhouses, Afr. J. Biotechnol. , 2009; 8(25): 7205-7277.
    [2-41] J. Kindangen, G. Krauss, P. Depecker,Effects of roof shapes on wind-induced air motion inside buildings, Build. Environ. 1997; 32(1):1–11.
    [2-42] Kolawole Ajibola, Ventilation of spaces in a warm, humid climate—Case study of some housing types, Renew. Energy 1997; 10(1):61-70.
    [2-43] M. Sandberg, What is ventilation efficiency? Build. Environ. 1981; 16: 123-135.
    [3-1] P. F. Linden, The fluid mechanics of natural ventilation, Annu. Rev. Fluid Mech. 1999;31:201-38.
    [3-2] Shaun D. Fitzgerald, Andrew W. Woods. Natural ventilation of a room with vents at multiple levels. Building and Environment. 2004; 39:505-521.
    [3-3] Stephen R. Livermore, Andrew W. Woods, Natural ventilation of a building with heating at multiple levels, Building and Environment. 2007; 42:1417-1430.
    [3-4] H. Kotani, R. Satoh and T. Yamanaka, “Stack effect in light well of high rise apartment building”, Proc. IIR Int. Sym. Air Conditioning in High Rise Buildings ’97, Sep 1997, Shanghai, China, pp.628-633.
    [3-5] Joanne M. Holford, Gary R. Hunt, Fundamental atrium design for natural ventilation, Building and Environment. 2003;38:409-426.
    [3-6] Architectural Energy Corporation, Energy Design Resources Design Brief-Displacement ventilation. 2005.
    [3-7] Steven J. Emmerich, Tim McDowell, Initial evaluation of displacement ventilation and dedicated outdoor air systems for U.S. commercial buildings, NISTIR 7244. 2005.
    [3-8] Kisup Lee, Zheng Jiang, Qingyan Chen, Air distribution effectiveness with stratified air distribution systems, ASHRAE Transactions. 2009;115(2).
    [3-9] Guohui Gan, Numerical investigation of local thermal discomfort in offices with displacement ventilation, Energy and Buildings. 1995;23:73-81.
    [3-10] Zhang Lin, T. T. Chow, C. F. Tsang, K. F. Fong, L. S. Chan, CFD study on effect of the air supply location on the performance of the displacement ventilation system, Building and Environment. 2005;40:1051-1067.
    [3-11] Elisabeth Mundt, Non-buoyant pollutant sources and particles in displacement ventilation, Building and Environment. 2001;36:829-836.
    [3-12] A.S. Awad, R.K. Calay, O.O. Badran, A.E. Holdo, An experimental study of stratified flow in enclosures, Applied Thermal Engineering. 2008;28:2150-2158.
    [3-13] Wei-Hwa Chiang, Chia-Ying Wang, Jian-Sheng Huang, Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region, Building and Environment. 2012;48:113-127.
    [3-14] C.K. Lee, H.N. Lam, Computer modeling of displacement ventilation systems based on plume rise in stratified environment, Energy and Buildings. 2007;39:427-436.
    [3-15] http://cmiserver.mit.edu/natvent/Europe/commerzbank.htm
    [3-16] 內政部建築研究所,2012綠建築評估手冊—基本型(BC), 內政部建築研究所,2012。
    [3-17] John S. Reynolds, Mechanical and Electrical Equipment for Buildings, John Wiley & Sons, 1999.
    [3-18] Vincent Jones, Ernst Neufert Architects' Data. Wiley-Blackwell, 1980.
    [3-19] 日本建築學會,最新精簡版建築設計資料集成,詹氏書局,2011。
    [3-20] Related Commercial Resources of “Thermal comfort” , ASHRAE. 2009
    [3-21] Xiaosh Lu. Estimation of indoor moisture generation rate form measurement in buildings. Building and Environment. 2003;38:665-75.
    [3-22] Guohui Gan, Simulation of buoyancy-driven natural ventilation of buildings-Impact of computational domain, Energy and Buildings. 2010;42:1290-1300.
    [3-23] J. Franke, A. Hellsten, H. Schlunzen, B. Carissimo, COST Action 732: Best practice guideline for the CFD simulation of flows in the urban environment, Cost, Hamburg, 2007.
    [3-24] J.D. Posner, C.R. Buchanan, D.D. Rankin, Measurement and prediction of indoor airflow in a model room, Energy Build. 2003; 35:515-526.
    [3-25] Stephen R Livermore, Andrew W Woods, Natural ventilation of multiple storey buildings:The use of stacks for secondary ventilation, Building and Environment. 2006;41:1339-1351.
    [3-26] Shafqat Hussain, Patrick H.Oosthuizen, Numerical investigations of buoyancy-driven natural ventilation in a simple three-storey atrium building and thermal comfort evaluation,Applied Thermal Engineering. 2013.
    [3-27] NH Wong, H Feriadi, PY Lim, KW Tham, C Sekhar, KW Cheong. Thermal comfort evaluation of naturally ventilated public housing in Singapore. Building and Environment. 2002;37:1267-77.
    [3-28] NH Wong, SS Khoo. Thermal comfort in classrooms in the tropics. Energy and Buildings 2003;35:337-51.

    QR CODE