簡易檢索 / 詳目顯示

研究生: 徐茂修
Mao-Hsiu Hsu
論文名稱: 退火演算法於光學薄膜元件及微帶線多頻帶濾波器之設計應用
Applications of Annealing Algorithm on the Design of Optical Thin-Film Devices and Microstrip Multi-Band Filters
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 高曜煌
Y. H. Kao
吳霖堃
L.K. Wu
陳漢宗
Hann-Trong Chen
胡能忠
Neng-Chung Hu
徐敬文
Ching-Wen Hsue
黃正亮
Cheng-Liang Huang
魏炯權
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 121
中文關鍵詞: 微帶線多頻帶濾波器光學薄膜元件退火演算法
外文關鍵詞: Annealing Algorithm, Optical Thin-Film Devices, Microstrip Multi-Band Filters.
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文「模擬退火演算法」針對高密度分波多工器有高效率及全域最佳解的優點設計,其光譜之透射及反射特性曲線應用此法均有效地達成光學特性之要求。本設計程序集中於1550 nm之波段,亦可應用於任意光譜波段。
再者,敘述「模擬退火演算法」在計算機輔助電路設計最佳化理論,有關對稱雙頻帶寬頻微帶線濾波器,其特性至少可達500MHz寬頻以上,以此理論應用於雙頻帶微帶線濾波器之設計,不需事先電路佈局及全波模擬的優勢,基於最佳化演算法退火步驟調整傳輸線之特徵阻抗及電性長度值合成2.4 GHz及5.2 GHz單一輸入埠及單一輸出埠之雙頻濾波器,為設計良好之雙頻電路結構,可由一寬頻之帶通(BP)及窄頻帶拒(BS)或三個帶拒具有三個傳輸零點之雙特性行為諧振器(DBR)或步階阻抗諧振(SIR)之二次諧波之波段調整在頻譜上合成,所以在合成過程中先藉由二個短截線並聯之開路或短路諧振為基本架構,此乃寬頻帶通及窄頻帶拒暨雙特性行為諧振器之理論,爾後衍生出二截或三截之串列短截線之開路或短路步階阻抗諧振架構,分別計算二、三、四階濾波器其評價函數均幾乎收斂至零,並趨近理想濾波器特性曲線,達到全域最佳解,之後並藉由最佳化微調之優勢調整二階濾波器之連接傳輸線,使其達成匹配及高品質因數(Hi-Q)之設計,有關最佳化演算法、全波電磁模擬及實作之雙寬頻帶濾波器之插入、入射及反射損失特性曲線均十分逼近,同理,此法之濾波應用不只適用於2.4 GHz及5.2 GHz,同時亦可應用於任何其他雙頻帶之設計。
最後,由最佳化後之實驗結果去分析此一新穎雙頻帶微帶線濾波器之架構,藉由步階阻抗諧振理論,利用S參數及ABCD矩陣之雙埠網路去分析,串聯及並聯連續序列多種變化之合併出短路諧振器及開路諧振器,並推導出雙頻諧振器簡易設計公式控制傳輸極點、零點暨四個衰減頻帶並合成濾波器。基於饋入點及諧振頻率選擇,傳輸零點因此決定,再藉由控制諧振器的阻抗比值,則雙頻中心頻率因此可以決定,然後選擇阻抗值之大小來決定濾波器之裙擺特性、品質因數及頻寬之大小。有關各種步階阻抗諧振雙中心頻率之最大分離間隔及最大頻寬限制亦被討論,及更進一步,全域合成法亦被使用有關微型化之領域,十分簡易之架構,基於彎折步階阻抗諧振器可明顯地降低50%之佈局面積,藉由匹配理論提昇雙頻濾波器的效率,調整傳輸線之阻抗及電性長度可補償雙頻帶響應之優質,以及彎折電路之匹配並改善插入及反射損失。模擬及實作之實驗結果應用此法亦十分有效地完成高效能、低價格、體積小、製程簡單、易於維護之商業化優勢,顯現出本研究之學理明晰正確,甚具應用價值。


This method shows the superiority of high effectiveness and global optimized solutions designing DWDM filters by using the idea of simulated annealing algorithm. The spectral transmittance and reflectance curves of these filters applying this method all effectively achieve their desired optical performances. Although the design procedure is concentrated on 1550 nm band, in general, this method can be applied to arbitrary optical bands.
Then, we present a computer-aided circuit design procedure of simulated annealing algorithm to optimize multi-wideband microstrip line filters with symmetrical at least 500 MHz bandwidths respectively. This method demonstrates the superiority of designing microstrip line dual-band filters without previous circuit layout first and full wave simulations. The value of characteristic impedances and electrical lengths of transmission lines synthesizing 2.4 GHz and 5.2 GHz multi-band filters with a single input and a single output are adjusted to the annealing process by the optimization algorithm. For the fine multi-band circuit models, it is imperative that one wide-band band-pass (BP) filter is inserting into one narrow band band-stop (BS) filter or double behavior resonator (DBR) is the three band-stop responses with three transmission zeros or stepped impedance resonator (SIR) is controlling the second harmonic band to be the pass-band in the frequency domain. Therefore, the synthesized procedure is first operated two stubs in parallel with the opened or short circuit resonator and they are based on the wide BP & narrow BS and DBR theorems. Then, we develop a series of two or three stubs with the opened or short circuit resonator to be the SIR configurations. The merit functions almost converge to zero to calculate the second, third and fourth order filters respectively and approach the ideal filter curve and global optimized solutions. We also take the advantage of tuning the connected transmission line (TL) for the second order filter by optimized algorithm then we can get the matched and high quality factor (Hi-Q) design. The optimized algorithm, full wave simulation and fabricated of multi-band insertion, transmission and reflection loss of responses are almost the same. The method is applicable not only in 2.4 GHz and 5.2 GHz, but can be applied to any other multi-frequency bands.
Finally, based on previously experiment results, we also analyze and present a novel method of designing microstrip line multi-frequencies band filters by applying the SIR technology. Based on these stated topologies and optimal algorithm results, we derived the general design and synthesized equations to get a very efficient theoretical response. Here, we proposed new some simplifications and general fundamental equations based on transmission poles and zeros to synthesize multi-passband and the four attenuated bands. Utilizing the S-parameter and the ABCD parameters of a two-port network is for the analysis of short-circuited and open-circuited resonators with various combinations of series and shunt sequences. The transmission zeros are determined where we consider the feeding positions and resonance frequency then by controlling the impedance ratio of the resonators, both center frequencies of the two passbands are determined. Therefore, we can choose the impedance magnitude to design the skirt performance, Q factor, and bandwidth of the filters. The separated distance of two center frequencies and limit maximum bandwidth for all of the resonators are discussed. Moreover, a global synthesis approach is also discussed on miniaturization. A simplified architecture based on bent SIR offers the 50% area reduction of layout. Technology of matching circuit creates higher performance multi-band filter. We adjust impedance and electrical length of TL to compensate multi-band and bending for matches and highly improve the insertion and reflection loss. Simulation and measurement are performed to validate our method and are pretty matched. It shows that these filters applying these methods all effectively achieved desired high performances, resulted in a lower cost of multi-band filters and opened the way to commercial mass productions.

Chapter 1 Introduction-----1 1.1 Research Motive----1 1.2 Thesis Outline ---2 Chapter 2 Theorem----4 2.1 Optimized CAD -----4 2.2 Optical Thin Film----9 2.2.1 Maxwell’s Equations---9 2.2.2 Multi-Layer Methodology---10 2.2.3 TE Mode Analysis---12 2.3 Microstrip Novel Configuration of Multiband Resonators--15 Chapter 3 Annealing Optimum on Optical Devices and Multi-Band Microstrip Filters-----20 3.1 Highpass Filter---24 3.2 Lowpass Filter---28 3.3 High Reflection Coatings--29 3.4 Narrow Bandpass Filters--33 3.5 Symmetrical High Order Multi-band Microstrip Filters--38 Chapter 4 Implementation Numerical and Experimental Results of Microstrip Multi-Band Filters-----52 4.1 Implementation Consideration of BP-BS Module 1 Multiband Filters-------53 4.2 Implementation Consideration of BP-BS Module 2 Multiband Filters------55 4.3 Implementation Consideration of SIR Module A Multiband Filters------57 4.4 Implementation Consideration of SIR Module C Multiband Filters-----59 4.5 Implementation SIR Module A and SIR Module B 2-order Multiband Filters with Optimum Connection Transmission Line------62 4.6 Implementation Hybrid Model for 2-Order Multiband filters------64 4.7 Implementation for Narrow Band Applications and High Skirt Response-----66 Chapter 5 High Performance and Miniaturization of SIR Microstrip Multi-Band Filters------69 5.1 RF Filter for Miniaturization and Spurious Response-----69 5.2 Multi-Band SIR--73 5.3 Synthesis for Miniaturization and High Performance---93 5.4 Fabrication and Measurement---101 Chapter 6 Conclusion-----106 6.1 Summary-106 6.2 Further Work---108 References --109 Biography --119 Publications ----119

[1] Rob A. Rutenbar, Simulated Annealing Algorithm: An Overview, IEEE Circuits and Devices Magazine, pp. 19-26, Jan. 1989.
[2] Shiyou Yang, Jose Marcio Machado, Guangsheng Ni, S. L. Ho and Ping Zhou, A self-Learning Simulated Annealing Algorithm for Global Optimization of Electromagnetic Devices, IEEE Tran. on Magnetics. July, 2000.
[3] J. D. Wilson, A Simulated Annealing Algorithm for Optimizing RF Power Efficiency in Coupled-Cavity Traveling-Wave Tubes, IEEE Tran. on Electron Device, Vol. 44, No. 12, pp. 2295-2299, Dec. 1997.
[4] S. Saika, M. Fukui, M. Toyonaga and T. Akino, WSSA: A High Performance Simulated Annealing and Its Application to Transistor Placement, IEICE Tran. Fundamentals, Vol. E83-A, No.12 pp. 2584-2591, Dec. 2000.
[5] G. Washington, H. S. Yoon, M. Angelino and W. H. Theunissen, Design, Modeling and Optimization of Mechanically Reconfigurable Aperture Antennas, IEEE Tran. on Antennas and Propagation, Vol. 50, pp. 628-637, May 2002.
[6] K.-P. Ho, C.-K. Chan, F. Tong and L.K.Chen, Exact analysis of homodyne crosstalk induced penalty in WDM network, IEEE Photon. Technol. Lett., vol. 10, 1998.
[7] H. C. Lu, Simulation and Investigation of Narrow-band All- dielectric Fabry-Perot Interference Filter for DWDM System, Master thesis, Taiwan, 1998.
[8] H. C. Huang, M. H. Hsu, K. L. Chen, and J. F. Huang, Simulated Annealing Algorithm Applied in Optimum Design of Optical Thin-Film Filters, Microwave and Optical Technology Letters, Vol. 38, No. 5, pp.423-428, Sept. 2003.
[9] H. Clark Bell, Zolotarev Bandpass Filters, IEEE Tran. Microwave Theory Tech., vol. 49, No. 12, pp.2357-2362, Dec., 2001.
[10] H. Miyake, S. Kitazawa, T Ishizaki, T Yamada, and Y Nagatomi, “A Miniaturized Monolithic Dual Band Filter Using Ceramic Lamination Technique for Dual Mode Portable Telephone,” 1997 IEEE MTT-S Digest, WE3F-10 ,pp.789-792,1997.
[11] Chi-Ho Chang; Hsien-Shun Wu; Jay Yang; Tzuang, C.-K.C.; Coalesced single-input single-output dual-band filter, Microwave Symposium Digest, 2003 IEEE MTT-S International , Volume: 1 , 8-13 June 2003, Page(s): 511 -514.
[12] Quendo, C.; Rius, E.; Person, C.; An original topology of dual-band filter with transmission zeros, Microwave Symposium Digest, 2003 IEEE MTT-S International, Volume: 2 , 8-13 June 2003, Page(s): 1093 -1096 vol. 2.
[13] Avrillon, S.; Pele, I.; Chousseaud, A.; Toutain, S.; Dual-band power divider based on semiloop stepped-impedance resonators, Microwave Theory and Techniques, IEEE Transactions on , Volume: 51 Issue: 4 , April 2003,Page(s): 1269 -1273.
[14] H. L. Thal, Jr., Design of microwave filters with arbitrary responses, Int. J. Microwave and Millimeter-wave Computer-Aided Engineering, May 1997, pp. 208-221.
[15] W.A. Atia, K. A. Zaki and A. E. Atia, Synthesis of general topology multiple coupled resonator filters by optimization. 1998 IEEE MTT-S, Digest, pp. 821-824.
[16] J.W. Bandler, “Optimization methods for computer-aided design.” IEEE Trans., MTT-17, Aug. 1969, 533-552.
[17] K.C. Gupta, R. Garg, and R. Ghadha, Computer-Aided Design of Microwave Circuits, Artech House, Dedham, MA, 1981.
[18] D.J. Wilde, Optimum seeking methods, Prentice Hall, Englewood Cliffs, NJ, 1964.
[19] M.J.D. Powell, “Minimization of functions of several variables.” In Numerical Analysis: An Introduction, J. Walsh (Ed.), Thompson, Washington, DC, 1967.
[20] M.J.D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives.” Computer J., 7, 4, 1964, 303-307.
[21] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York, 1989.
[22] J.-S. Hong, “Genetic approach to bearing estimation with sensor location uncertainties.” Electronics Letters, 29, 23, Nov. 1993, 2013-2014.
[23] T.-S. Horng, C.-C. Wang and N.G. Alexopoulos, “Microstrip circuit design using neural networks.” IEEE MTT-S, Digest, 1993, 413-416.
[24] A.H. Zaabab, Q.J. Zhang, and M. Nakhla, “Analysis and optimization of microwave circuits and devices using neural network models.” IEEE MTT-S, Digest, 1994, 393-396.
[25] A.H. Zaabab, Q.J. Zhang, and M. Nakhla, “A neural network modeling approach to circuit optimization and statistical design.” IEEE MTT-43, June 1995, 1349-1358.
[26] P.M. Watson and K.C. Gupta, “EM-ANN models for microstrip vias and interconnects in dataset circuits.” IEEE Trans., MTT-44, Dec. 1996, 2495-2503.
[27] G.L. Creech, B.J. Paul, C.D. Lesniak, T.J. Jenkins, and M.C. Calcatera, “Artificial neural networks for fast and accurate EM-CAD of microwave circuits.” IEEE Trans., MTT-45, May 1997, 794-802.
[28] P. Baurrascano, M. Dionigi, C. Fancelli, and M. Mongiardo, “A neural network model for CAD and optimization of microwave filters.” IEEE MTT-S, Digest, 1998, 13-16.
[29] P.M. Watson, C. Cho, and K.C. Kupta, “Electromagnetic-artificial neural network model for synthesis of physical dimensions for multilayer asymmetric coupled transmission structures.” International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 9, 1999, pp. 175-186.
[30] A. Patnaik, R.K. Mishra, “ANN techniques in microwave engineering.” IEEE Microwave Magazine, 1, 1, March 2000, 55-60.
[31] G.C. Temes and D.A. Calahan, “Computer-aided network optimization, the state-of-art.” Proc. IEEE, 55, Nov. 1976, 1832-1863.
[32] S. Ye and R.R. Mansour, “An innovative CAD technique for microstrip filter design.” IEEE Trans., MTT-45, May 1997, 780-786.
[33] J.W. Bandle, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, “Space mapping technique for electromagnetic optimization.” IEEE Trans., MTT-42, Dec. 1994, 2536-2544.
[34] J.W. Bandle, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen, “Electromagnetic optimization exploring aggressive space mapping.” IEEE Trans., MTT-43, Dec. 1995, 2874-2882.
[35] J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen and J. Sondergaard, Space Mapping: The State of the Art, IEEE Tran. On Microwave Theory and Techniques, Vol. 52, No. 1 pp.337-361 Jan. 2004.
[36] B.R. Smith and G.C. Temes, “An iterative approximation procedure for automatic filter synthesis.” IEEE Trans., Circuit Theory, CT-12, Mar. 1965, 107-112.
[37] D.M. Pozar, Microwave Engineering , 2nd ,Addison Wesley.
[38] D.K.Cheng, Fundamentals of Engineering Electromagnetics, 2nd ,Addison Wesley.
[39] H. C. Huang, Multilayer Dielectric Materials Electromagnetic Theory Apply in Optical Thin-Film Filters Devices, Master thesis, Taiwan, 2002.
[40] T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, John Wiley & Sons, New York, 1989.
[41] State-of-the art Filter Design Uing EM and Circuit Simulation Techniques, 1997 IEEE MTT-S, MTT-S Workshop(WMA), 1997.
[42] D.G. Swanson Jr, ”First pass CAD of microstrip filters cuts development ” Microwave & RF ’95, London, 1995, pp.8-12.
[43] Mathcad User’s Guide, MathSoft inc., Cambridge, MA, 1992.
[44] G.I.Zysman, and A.K.Johnson, Coupled transmission line networks in an inhomogeneous dielectric medium, IEEE Trans., MTT-17.Oct. 1969, pp.753-759.
[45] J.-S. Hong, H.P. Feldle, and W. Wiesbeck, Computer-aided design of microwave bandpass filters, In Proceedings of the 8th Colloquium on Microwave Communication, Budapest,1986, pp.75-76.
[46] M.Kirschning and R. H. Jansen, Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines, IEEE Trans., MTT-32, Jan. 1984,pp.83-90.
[47] R. F. Harringdon, Field Commutation by Moment Methods, Macmillian, New York, 1968.
[48] J.C. Rautio and R.F Harrington, An electromagnetic time-harmonic analysis of arbitrary microstrip circuits.”IEEE Trans.,MTT-35,Aug. 1987, pp.726-730.
[49] M. Koshiba, K. Hayata, and M. Suzuki, Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems, IEEE Trans., MTT-33, Oct.1985, pp.900-905.
[50] K.S.Kunz and R.J.Leubleers, The Finite Difference Time Domain Method for Electro-magnetic, CRC Press, Boca Raton FL, 1993.
[51] J.S.Bagby, D.P.Nyquist, and B.C.Drachman, Integral formulation for analysis of integrated dielectric waveguides, IEEE Trans., MTT-33, Oct.1985, pp.906-915.
[52] M.Koshiba and M.Suzuki, Application of the boundary-element method to wave-guide discontinuous, IEEE Trans., MTT-34, Feb.1986, pp.301-307.
[53] Special Issue on Numerical Methods, IEEE Trans., MTT-33, Oct.1985.
[54] G.L. Mattaei and R.J. Forse, A note concerning the use of field solvers for the design of microstrip shunt capacitances in lowpass structures, International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 5, 5, Sept, 1995, pp.352-358.
[55] G.L. Mattaei, Techniques for obtaining equivalent circuits for discontinuities in planar microwave circuits, IEEE MTT-S Workshop (WSC), 2000.
[56] J.-S. Hong and M. J. Lancaster, Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters, IEEE Trans., MTT-44, Nov.1996, pp.2099-2109.
[57] J.-S. Hong and M.J. Lancaster, Theory and experiment of novel microstrip slow-wave open-loop resonators filters, IEEE Trans., MTT-45, Dec.1997, pp.2358-2365.
[58] J.-S. Hong, M.J. Lancaster, D. R.B. Greed, and J.-C. Mage, “On the performance of HTS microstrip quasi-elliptic function filters for mobile communications application.” IEEE Trans., MTT-48, July 2000, 1240-1246.
[59] R.J. Cameron, General prototype network synthesis methods for microwave filters, ESA Journal, 6, 1982, pp.193-206.
[60] D. Chambers and J.D. Rhodes, A low pass prototype network allowing the placing of integrated poles at real frequencies, IEEE Trans., MTT-31, Jan. 1983, pp.40-45.
[61] H.C. Bell, Jr., Canonical asymmetric coupled-resonator filters, IEEE Trans., MTT-30, Sept. 1982, 1335-1340.
[62] A.E. Atia and A.E. Williams, Narrow-bandpass waveguide filters, IEEE Trans., MTT-20, April 1972, pp.258-265.
[63] J.W. Bandle, R.M. Biernacki, S.H. Chen, and Y.F. Huang, Design optimization of interdigital filters using aggressive space mapping and decomposition. IEEE Trans., MTT-45, May 1997, 761-769.
[64] D. G. Swanson, Jr., Simulating EM fields, IEEE Spectrum, 28, Nov. 1991, pp.34-37.
[65] D.G. Swanson, Jr. (Guest Editor), Engineering applications of electromagnetic field solvers, International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 5, 5, Sept. 1995(Special Issue).
[66] J.-S. Hong and M. J. Lancaster, Investigation of microstrip pseudo-interdigital band-pass filters using a full-wave electromagnetic simulator, International Journal of Microwave and Millimeter-Wave Computer Aided Engineering, 7, 3, May 1997, pp.231-240.
[67] R. Levy, Filter and component synthesis using circuit element models derived form EM simulation, IEEE MTT-S Workshop (WMA),1997.
[68] Y. L. Chen, Dual-Band Filter for Wireless Communications, Master thesis, Taiwan, 2002.
[69] J.A.Kong, Electromagnetic Wave Theory, 2nd ,Wesley Interscience, New York,1990.
[70] C. R. Menyuk, D. Wang, A. N. Pilipetskii, Repolarization of Polarization-Scrambled Optical Signals Due to Polarization Dependent Loss, IEEE Photon.Technol.Lett., vol.9,Sept 1997.
[71] Ping Lu,Liang Chen,and Xiaoyi Bao, “Polarization Mode Dispersion and Polarization Dependent Loss for a Pulse in Single-Mode Fibers,”J.Lightwave Technol.,vol.19,June 2001.
[72] Bruyere, F.; Audouin, O., “ Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Photon.Technol. Lett.,vol.6,May 1994.
[73] Dennis Derickson, Fiber Optic Test and Measurement, HP Company, 1998.
[74] E. Simova, Pierre Berini,and C. P. Grover, Spectral Characterization and Chromatic Dispersion Measurements in Fiber Bragg Gratings for Dispersion Compensation, Conf. IEEE, May 1998.
[75] E. Simova, Pierre Berini, C. P. Grover, Characterization of Chromatic Dispersion and Polarization Sensitivity in Fiber Gratings, IEEE, vol.48, Oct 1999.
[76] N.Gain, Statistics of polarization dependent losses, Opt. Commun., vol.114, pp. 399-405,1995.
[77] El Amari, A.; Gisin, N.; Perny, B.; Zbinden, H.; Zimmer, C.W., Statistical prediction and experimental verification of concatenations of fiber optic components with polarization dependent loss, J.Lightwave Technol. vol.16,March 1998.
[78] E. Simova, P. Berini,and C. P.Grover, Characterization of Wavelength-Selective Fiber-Optic Devices Using a Modified Phase-Shift Method, J.Lightwave Technol.vol.19,May 2001.
[79] Dipakbin Q. Chowdhury, Lakshmi Bhagavatula, Polarization Dependent Loss Induced Gain Ripple Statistics in Erbium-Doped Fiber Amplifiers,”IEEE Photon.Technol. Lett.,vol.13,Dec 2001.
[80] Arellano, W.A.; Berendt, M.O.; Fragnito, H.L., Polarization modulation study of gain anisotropy in erbium-doped fiber amplifiers,” Lasers and Electro-Optics of CLEO’00 ,pp.304, 2000.
[81] Lin-Chuan Tsai; Ching-Wen Hsue; Dual-band bandpass filters using equal-length coupled-serial-shunted lines and z-transform technique, M.T.T. Tran. on Volume:52, NO.4 , April 2004, Page(s): 1111 -1117.
[82] K.Wada, Y. Yamamoto and O. Hashimoto, "Design of bandpass filters with a Function to control the number of attenuation poles," IEICE Trans.Electron. pp.578-585,vol.E85-C,No.3,March.2002.
[83] K.Wada, T. Ohno, K. Nakagawa and O. Hashimoto, "Realization of low spurious responses by various bandpass filters using open-ended resonators," IEICE Trans. Electron.,Vol.E86-C,No.12 pp.2394-2402,Dec.2003.
[84] K.Wada, T. Ohno, and O. Hashimoto, "A class of a planar duplexer consisting of BPFs with attenuation poles designed by manipulating tapped resonators," IEICE Trans. Electron.,Vol.E86-C, pp.1613-1620, Aug.2003.
[85] Mao-Hsiu Hsu and Jhin-Fang Huang, "Annealing algorithm applied in optimum design of 2.4 GHz and 5.2 GHz dual-wideband microstrip line filters, " IEICE Trans. Electron.,Vol.E88-C, pp.47-56, No.1 Jan.2005.
[86] J. L. Lin, Microwave Dual-band (2.4/5.2GHz) Filter Design, Master thesis, Taiwan, 2003.
[87] Jhin-Fang Huang, Mao-Hsiu Hsu , Design and Implement of High Performance and Miniaturization of SIR Microstrip Multi-Band Filters, accepted, IEICE, Trans. Electron., July, 2005.
[88] C.Y. Hsieh, Design of Small Size and High Performance Microstrip Dual- band Filter, Master thesis, Taiwan, 2004.
[89] C. Quendo, E. Rius and C. Person, Narrow Bandpass Filters Using Dual-Behavior Resonators Based on Stepped-Impedance Stubs and Different-Length Stubs, IEEE, Trans. M.T.T., Vol.52, No,3, March 2004, pp.1034-1044.
[90] Makimoto, M. and Yamashita, S.; "Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators" Microwave Theory and Techniques, IEEE Transactions on ,Volume: 28 , Issue: 12 , Dec 1980 Pages:1413 – 1417.
[91] U. Rosenberg, and S. Amari, Novel Coupling Scheme for Microwave Resonator Filters, Microwave Theory and Techniques, IEEE Transactions on ,Volume: 50 , No. 12 , Dec 2002, pp.2896-2902.
[92] R. J. Cameron, General Coupling Matrix Synthesis Methods for Chebyshev Filtering Functions, Microwave Theory and Techniques, IEEE Transactions on ,Vol. 47, No. 4, April 1999, pp.433-442.
[93] L. Zhu and W. Menzel, Compact Microstrip Bandpass Filter with Two Transmission Zeros Using a Stub-Tapped Half-Wavelength Line Resonator, IEEE Microwave and Wireless Components Letters, Vol. 13, No. 1, Jan 2003, pp.16-18.
[94] T. Itoh, G. Haddad and J. Harvey, RF Technologies for Low Power Wireless Communications, John Wiley & Sons, Inc, 2001
[95] I. D. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology, IEE circuits, devices and systems series, No.13, 1988.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE