簡易檢索 / 詳目顯示

研究生: 趙世民
Shih-Min Chao
論文名稱: 以新型光學設計模式及新式田口模擬退火優化法運用於自然導光照明系統之設計與分析
Design and Analysis of Natural Light Illumination System by Innovative Optical Design Method and Hybrid Taguchi-Simulated Annealing Algorithm
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 李三良
San-Liang Lee
葉瑞徽
Ruey-Huei Yeh
趙涵捷
HanChieh Chao
胡能忠
Neng-Chung Hu
陳省隆
Hsing-Lung Chen
林宗翰
Tzung-Han Lin
陳怡永
Yi-Yung‎ Chen
葉世川
Shih-Chuan Yeh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 90
中文關鍵詞: 自然導光照明系統太陽集光器模組化室內照明模擬退火法
外文關鍵詞: Light Brick Prism, Sunlight, Sunlight collector, Cascadable, Prisms, Lightpipes, indoor illumination lens, Hybrid Taguchi-Simulated Annealing algorithm, Simulated Annealing algorithm, Non-imaging system
相關次數: 點閱:305下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    近年來由於能源危機及溫室效應,節省能源消耗及減少二氧化碳已是相當重要的議題,其中綠色能源更是受到相當重視之重要能源。為了節能減碳及健康照明,近年來已經有許多的研究著重於無需光電轉換之太陽光集光系統,例 : HIMAWARI, SOLUX 及自然光導光照明系統 (NLIS)等技術。而在這些技術當中,自然導光照明系統可更加容易地施工及安裝於建築物上,並可擷取自然光進入室內進行照明。

    自然光導光照明系統可分為集光、傳光及放光三個子系統。其中集光子系統部份,稜鏡結構元件扮演了非常重要的角色,此稜鏡結構可收集太陽光並在自然光導光照明系統中傳輸太陽光,此稜鏡元件名稱為”導光磚”,並可將其貼合於建築物的外觀上。在本論文研究中,我們提出了一新型導光磚,此新型導光磚相較於傳統導光磚可大幅提升效率。在新型導光磚結構上,我們透過數學理論進行設計及分析,設計了兩個稜鏡結構子元件,名稱各為”主導光磚”及”輔導光磚”,藉由組合主導光磚及輔導光磚後,此組合元件將可形成一單元元件,而模擬證明,即使串接超過十個單元元件,太陽光在此導光磚中進行壓縮及傳輸後,仍可保持高效率。藉由新型導光磚的可串接特性,相較於傳統導光磚,不僅可大幅提高效率,並且可減少系統出口數目,進而減少傳光元件的數量。

    自然光導光照明系統相較於傳統照明燈具可節省80%的能源消耗,具有節能減碳的優點,然而,在現行的集光及傳光子系統設計概念上,為了減少整體厚度及重量,集光子系統尺寸體積必須越薄越好;相對地,傳光子系統尺寸則必須越大越好以利於更佳的傳輸效率,所以在集光及傳光兩個子系統間,存在著系統尺寸不對等問題。為了解決此系統尺寸不對等問題,我們提出了一新型具有稜鏡結構之錐形光學耦合器,並可將此耦合器安裝運用於自然光導光照明系統中的集光及傳光子系統間,此新型錐型光學耦合器可較輕易地連接集光及傳光子系統,並可因此增加自然光導光照明系統的模組化程度。在本論文中,我們分析了此新型耦合器之數學模型及耦合效率,並且,我們亦分析了包含了集光、新型錐形耦合器及傳光子系統之整體系統傳輸效率。相較於傳統自然光導光照明系統耦合器,例 : 光纖,此新型錐形耦合器不僅僅可提升整 體系統(包含導光磚、耦合器及2公尺長傳光管)效率1.4倍,亦可簡易地連結集光及傳光兩個子系統。此設計並可透過模組化設計概念進行大量量產,進而藉由自然光導光照明系統來提供穩定及高效率之太陽光。

    除了新型集光器及耦合器之外,本論文亦提出了一使用於放光子系統之新型混合式田口模擬退 火優化法,由於當集光子系統或傳光子系統進行新式元件改善後,出光配光曲線會因此而改變, 相對應的放光元件也要跟著微調或重新設計,故需進行優化來調整放光元件之設計,傳統模擬退火法可求解廣域優化問題,所以近年來已漸漸地被使用於非成像光學系統上,然而,傳統模擬退火法與退火時程及初始點設定具有強烈關聯性,所以若初始值設定不佳,則會造成優化結果不佳或優化時間變得相當冗長,本論文提出一新型混合式田口模擬退火優化,我們將傳統模擬退火法中加入田口法,期望透過此新型優化法來減少模擬次數及較穩定之優化結果值。此新型優化法亦已模擬證明可使用於全反射透鏡及室內放光光學透鏡上,並成功地證明新型之混合田口模擬退火優化法可更精確搜尋優化值且具有較低的初始值依賴性。


    ABSTRACT

    Regarding to the energy-saving and carbon dioxide reduction, the green energy has been gaining popularity in recent years. For saving energy and healthy lighting, there are many researches to focus on sunlight system without opto-electronic conversion, ex : HIMAWARI, SOLUX and Natural Light Illumination System (NLIS). Among on those technologies, NLIS can be used in construction and gather nature light for indoor illumination. There are three subsystems of NLIS, collecting, transmitting and emitting subsystem.

    Natural light illumination system (NLIS) with sunlight can be separated into collecting, transmitting, and emitting three subsystems. Regarding to collecting subsystem, prismatic elements play a key role in the natural light illumination system for collecting and guiding sunlight. The prismatic elements are named as “light bricks” and tile on the outsides of buildings for indoor illumination. In this paper, we present an innovative prismatic structures design to highly increase the efficiency compared to conventional light bricks. By the mathematical analysis, we design two prismatic elements as “Main Light Bricks” and “Support Light Bricks”. By assembling the two light bricks as a basic unit, the sunlight will be compressed to transmit and the system still keep high efficiency after guiding over ten cascadable units. Regarding to the cascadable characteristic, the innovative New Light Bricks not only increase the efficiency but reduce the numbers of output ports compared to conventional light bricks.

    NLIS can save 80% of the energy compared to traditional lighting. However, there is a size mismatch problem happened between conventional collecting and transmitting subsystems. For reducing the thickness and weight of the system, the dimensions of collecting subsystem have to design as thinner as possible. In opposite, the transmitting components are designed larger size for gathering higher transmission efficiency as possible. For solving the size mismatch and coupling problem, we proposed an innovative optical tapered coupler with the prism structure applied between collecting and transmitting subsystems of NLIS. The new optical coupler can easy to connect these two subsystems and increase the modulization capability of NLIS. In this research, we analyzed the mathematical model and coupling efficiency. Furthermore, we also analyzed the transmission efficiency of completed system including collecting, Tapered Prism Coupler (TPC) and transmitting subsystems. Compared to conventional NLIS coupler, like fiber, the innovative TPC can increase 1.4 times efficiency than conventional one based on whole system (Including light Brick, coupler and 2m light pipes). The TPC not only increases efficiency but also be easy to assemble these two subsystems and mass production based on modular design concept. Regarding to the innovative TPC and NLIS, we can provide steady illumination in indoor space for healthy illumination and energy saving.

    For design the optical lens of emitting subsystem, we proposes a new method for optimizing the total internal reflection (TIR) Lens and indoor illumination lens by using a hybrid Taguchi-Simulated Annealing algorithm. Regarding to different collecting and transmitting design, we have to re-designed the emitting components due to the variance of output light distribution. Therefore, it is necessary to re-design by optimization program. The conventional Simulated Annealing (SA) algorithm is a method for solving the global optimization problem and also being used in non-imaging system in recent years. However, the success of the SA depends heavily on annealing schedule and initial parameters setting. In this research, we incorporated the steady Taguchi method into SA algorithm and applied to TIR lens and indoor illumination lens successfully. The new Hybrid Taguchi-Simulated Annealing algorithm shows the more precise searching results and lower initial parameters dependence.

    TABLE OF CONTENTS 中文摘要 I ABSTRACT II 誌謝 IV TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES X CHAPTER 1 INTRODUCTION 1 1.1 THE BACKGROUND 1 1.2 THE OUTLINE 4 CHAPTER 2 NATURAL LIGHT ILLUMINATION SYSTEM 5 2.1 SUNLIGHT GUIDING SYSTEMS 5 2.2 NATURAL LIGHT ILLUMINATION SYSTEM 5 2.2.1 Collecting subsystem 6 2.2.2 Transmitting subsystem 8 2.2.3 Emitting subsystem 10 CHAPTER 3 PRISMATIC NATURAL LIGHT COLLECTING ELEMENTS 12 3.1 STRUCTURE AND DESIGN CONCEPT 12 3.1.1 Design Concept of Conventional Light Bricks 12 3.1.2 Design and Structure of New Light Bricks 16 3.1.2.1 First Surface 16 3.1.2.2 Second Surface 19 3.1.2.3 Support Light Bricks 19 3.2 STRUCTURE AND SIMULATION OF NEW LIGHT BRICKS 20 3.2.1 New Light Bricks System 20 3.2.2 Optimization of New Light Bricks Structure 22 3.2.3 Multi Layers Simulation Results 24 3.3 ANGULAR TOLERANCE ANALYSIS 27 3.3.1 Improvement Conventional Light Bricks 27 3.3.2 Angular Tolerance of Elevation 28 3.3.3 Sun Path Simulation 30 CHAPTER 4 OPTICAL TAPERED PRISM COUPLER 33 4.1 THE CONDITION OF DESIGN 33 4.1.1 Description of Light Brick 33 4.1.2 Description of Light Pipe 34 4.1.3 Structure and design concept of Tapered Prism Coupler 35 4.2 SIMULATION AND ANALYTICAL RESULTS 41 4.2.1 Parameters Analysis of Tapered Prism Coupler 41 4.2.2 Simulation results of TPC applied on NLIS 43 CHAPTER 5 OPTIMIZATION OF THE TIR AND INDOOR ILLUMINATION LENS 47 5.1 DESCRIPTION OF THE SIMULATED ANNEALING ALGORITHM AND THE TAGUCHI METHOD 47 5.1.1 Simulated Annealing algorithm 47 5.1.1.1 Neighbor search 50 5.1.1.2 Annealing schedule 50 5.1.1.3 Markov chain length and stopping criterion 51 5.1.2 Taguchi method 51 5.2 METHODOLOGY OF THE HYBRID TAGUCHI-SIMULATED ANNEALING ALGORITHM 52 5.3 EXPERIMENTS 59 5.3.1 Optical system structure definition 59 5.3.2 Algorithm parameters setting 60 5.3.3 Experiment results 62 5.3.4 Optical lens for indoor illumination 65 CHAPTER 6 CONCLUSION 68 REFERENCES 69 BRIEF BIOGRAPHY 73 THE JOURNAL PAPER LIST 73 THE CONFERENCE PAPER LIST 74 THE PATENT LIST 74

    REFERENCES

    [1] Deffeyes K. S., " Hubbert’s peak: the impending world oil shortage," American Journal of Physics, (2004).
    [2] O'Callaghan P. W., "Energy resources, CO2 production and energy conservation," Applied
    Energy, 44(2), 65-91 (1993).
    [3] Buran B., Butler L., Currano A., Smith E., Tung W., Cleveland K., Buxton C., Lam D., Obler T., Rais-Bahrami S., Stryker, and Herold K., "Environmental benefits of implementing alternative energy technologies in developing countries," Applied Energy, 76 (1), 89-100 (2003).
    [4] Wohlgemuth N., and Wojtkowska-odej G., "Policies for the promotion of renewable energy in
    Poland," Applied Energy, 76(1), 111-21 (2003).
    [5] Nomura N., and Akai M., "Willingness to pay for green electricity in Japan as estimated through contingent valuation method," Applied Energy, 78(4), 453-63 (2004).
    [6] Ponta F. L., and Jacovkis P. M., "Marine-current power generation by diffuser-augmented floating hydro-turbines," Renewable Energy, 33(4), 665-73 (2008).
    [7] Yoshida S., "Performance of downwind turbines in complex terrains," Wind Engineering, 30(6),
    487-502 (2006).
    [8] Grant A., Johnstone C., and Kelly N., "Urban wind energy conversion: The potential of ducted turbines," Renewable Energy, 33(6), 1157-63 (2008).
    [9] Zhou W., Yang H., and Fang Z., "Battery behavior prediction and battery working states analysis of a hybrid solar-wind power generation system," Renewable Energy, 33(6), 1413-23 (2008).
    [10] Elamouri M., and Ben Amar F., "Wind energy potential in Tunisia," Renewable Energy, 33(4),
    758-68 (2008).
    [11] Chirarattananon S., Chaiwiwatworakul P., and Pattanasethanon S., "Daylight Availability and Models for Global and Diffuse Horizontal Illuminance and Irradiance for Bangkok," Renewable Energy, 26(1), 69–89 (2002).
    [12] Krarti M., Erickson P., and Hillman T. C., "A Simplified Method to Estimate Energy Savings of Artificial Lighting Use From Daylighting," BuildEnviron, 40(6), 747–54 (2005).
    [13] Ossa DAG A., Walsh T., and Simon L. N., "Sustainable Building Technical Manual: Green Building, Design, Construction and Operations," US: Public Technology Inc. (1996).
    [14] He W., Chow T. T., Ji J., Lu J., Pei G., and Chan L. S., "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, 83(3), 199-210 (2006).
    [15] Gomez-Amo J. L., Tena F., Martinez-Lozano J. A., and Utrillas M. P., "Energy saving and solar energy use in the University of Valencia (Spain)," Renewable Energy, 29(5), 675-85 (2004).
    [16] Palz, Wolfgang, [Solar electricity: An economic approach to solar energy], UNESCO Butterworth & Co Ltd., London UK, (1978).
    [17] Hoffmann W., "PV solar electricity industry: Market growth and perspective," Solar Energy
    Materials and Solar Cells, 90(18-19), 3285-311 (2006).
    [18] Gordon J. M., Feuermann D., and Huleihil M., "Solar surgery," Journal of Applied Physics, 93(8),
    4843-51 (2003).
    [19] Feuermann D., Gordon J. M., and Huleihil M., "Solar fiber-optic mini-dish concentrators: first experimental results and field experience," Solar Energy, 72(6), 459-72 (2002).
    [20] Eck M., Zarza E., Eickhoff M., Rheinlander J., and Valenzuela L., "Applied research concerning the direct steam generation in parabolic troughs," Solar Energy, 74(4), 341-51 (2003).
    [21] Naeeni N., and Yaghoubi M., "Analysis of wind flow around a parabolic collector (1) fluid flow," Renewable Energy, 32(11), 1898-916 (2007).
    [22] Martin K. L., "An overview of daylighting systems," Solar Energy, 73 (2), 77-82 (2002).
    [23] Whang A. J. W., Chen Y. Y. and Wu B. Y., “Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight,” Solar Energy, 83, 1115-1122 (2009).
    [24] Yamaguchi M., Takamoto T., Araki K., "Super high-efficiency multi-junction and concentrator solar cells," Solar Energy Materials and Solar Cells, 90(18-19), 3068-77 (2006).
    [25] Bowden S., Wenham S. R., Dickinson M. R., and Green M. A., "High efficiency photovoltaic roof tiles with static concentrators," Proc. Record of the IEEE Photovoltaic Specialists Conference, 1, 774-7 (1994).
    [26] Yoshioka K., Nikaido T., Saitoh T., Kanai M., and Hide I., "Fabrication and properties of a glass-lens, static-concentrator mini-module," Proc. IEEE 1141, 4 (1997).
    [27] Tripanagnostopoulos Y., Siabekou C., and Tonui J. K., "The Fresnel lens concept for solar control of buildings," Solar Energy, 81(5), 661-75 (2007).
    [28] Feuermann D. and Gordon J. M., "High-concentration photovoltaic designs based on miniature parabolic dishes," Solar Energy, 70 (5), 423-430 (2001).
    [29] Sun J., Israeli T., Reddy T. A., Scoles K., Gordon J. M., and Feuermann D., "Modeling and experimental evaluation of passive heat sinks for miniature high-flux photovoltaic concentrators," ASME, 127, 138-145 (2005).
    [30] Feuermann D. and Gordon J. M., "Solar surgery: remote fiber optic irradiation with highly concentrated sunlight in lieu of lasers," Opt. Eng., 37(10), 2760-2767 (1998).
    [31] Feuermann D., Gordon J. M. and Huleihil M., "Laser surgical effects with concentrated solar radiation," Applied Physics Letters, 81 (14), 2653-2656 (2002).
    [32] Crisp V. H. C., Littlefair P. J., Cooper I. and McKennan G., "Daylighting as a passive solar energy option: and assessment of its potential in non-domestic buildings," Report BR129, BRE, Garston, UK (1988).
    [33] Lam J. C. and Chan A. L. S., "Energy audits and surveys of air-conditioning," Proc. The Australian and New Zealand Architectural Science Association Conference, 49 (1995).
    [34] Kischkoweit-Lopin M., "An overview of daylighting systems," Solar Energy, 73(2), 77-82 (2002).
    [35] Rosemann A., and Kaase H., "Lightpipe applications for daylighting systems," Solar Energy, 78(6), 772-80 (2005).
    [36] Benton, C. C., "Daylighting can improve the quality of light and save energy," Architectural Lighting, 1, 46-48 (1986).
    [37] Oddo, S., "Surprising discoveries about why you need more natural light," House and Garden, 148, 78-79 (1976).
    [38] Gillette, G., "The Case for Daylighting," The Construction Specifier, 58-63 (1984).
    [39] Li D. H. W, and Lam J. C., "Evaluation of lighting performance in office buildings with sunlighting controls," Energy and Buildings, 33(8), 793-803 (2001).
    [40] Bouchet B., and Fontoynont M., "Day-lighting of underground spaces: Design rules," Energy and Buildings, 23(3), 293-8 (1996).
    [41] Gilmore V. E., Sun flower over Tokyo, In Popular Science, Bonnier Corporation, USA. (1988).
    [42] Whang A. J. W., Chen Y. Y., Yang S. H., Pan P. H., Chou K. H., Lee Y. C., Lee Z. Y., Chen C. A. and Chen C. N., “Natural light illumination system,” Appl. Opt. 49, 6789-6801 (2001).
    [43] Whang A. J. W., Wang C. C., and Chen Y. Y., “Design of cascadable optical unit to compress light for light transmission used for indoor illumination,” Renewable Energy. 34, 2280-2295 (2009).
    [44] Whang A. J. W., Chen Y. Y., and Teng Y. T., “Designing Uniform Illumination Systems by Surface-Tailored Lens and Configurations of LED Arrays,” Journal of Display Technology. 5, 94-103 (2009).
    [45] Whang A. J. W., Chen Y. Y., and Hsieh S. L., “Guiding Light From LED Array Via Tapered Light Pipe for Illumination Systems Design,” Journal of Display Technology. 5, 104-108 (2009).
    [46] Yeh S. C., Whang A. J. W., Hsiao H. C., Hu X. D., and Chen Y. Y., “Distribution of Emerged Energy for Daylight Illuminate on Prismatic Elements,” Journal of Solar Energy Engineering. 133, 021007-1-021007-9 (2011).
    [47] Whang A. J. W., Lin C. M., and Yeh S. C., “Investigation of Prismatic Daylight Collectors With Different Apexes,” Journal of Solar Energy Engineering. 135, 011014-1-011014-10 (2013).
    [48] Li S., Chen F., Wang K., Zhao S., Zhao Z. and Liu S., “Design of a compact modified total internal reflection lens for high angular color uniformity,” Appl. Opt. 51, 8557-8562 (2012).
    [49] Wang G., Wang L., Li F. L. and Zhang G., “Collimating lens for light-emitting-diode light source based on non-imaging optics,” Appl. Opt. 51, 1654-1659 (2012).
    [50] Kenneth Li, and Seiji Inatsugu "Etendue efficient coupling of an array of LEDs for projection display," Proc. SPIE 5740, 36-40, (2005).
    [51] Matthijs K., Gerard H., and Steve P., "RGB LED Illuminator for pocket-sized projectors," SID, Digest of Papers, 943-945, (2004).
    [52] LUMILEDS, [Secondary optics design considerations for SuperFlux LEDs], LUMILEDS, San
    Jose, 2-23 (2002).
    [53] Banerjee S. and Hazra L.N., “Thin lens design of Cooke triplet lenses: application of a global optimization technique,” Proc. SPIE 3430, 175-183 (1998).
    [54] Koshel R. J., “Simplex optimization method for illumination Design,” Opt. Lett. 30, 649-651 (2005).
    [55] Koshel R. J., “Enhancement of the downhill simplex method of optimization,” Proc. SPIE 4832, 270-282 (2002).
    [56] Chen C. C., Tsai C. M., and Fang Y. C., “Optical design of LCOS optical engine and optimization with genetic algorithm,” J. Disp. Technol. 5(8), 293–305 (2009).
    [57] Chang C. P., Lee Y. H. and Wu S. Y., “Optimization of a thin-film multilayer design by use of the generalized simulated-annealing method,” Opt. Lett. 15, 595-597 (1990).
    [58] Eglese R. W., “Simulated Annealing: A tool for operational research,” European Journal of Operational Research. 46, 271-281 (1990).
    [59] Bolte A. and Thonemann U. W., “Optimizing simulated annealing schedules with genetic programming,” European Journal of Operational Research. 92, 402-416 (1996).
    [60] Foerster H. and Wascher G., “Simulated annealing for order spread minimization in sequencing cutting patterns,” European Journal of Operational Research. 110, 272-281 (1998).
    [61] Hecht E. Optics. (Fourth Edition, 2002)
    [62] Whang A. J. W., Lin C. M., Ku N. L., and Wang M. C., “A new static lighting concentrator with optical coupler,” Journal of Renewable Sustainable Energy. 4 (2012)
    [63] Whitehead L. A., “Simplified ray tracing in cylindrical systems,” Appl. Opt. 21, 3536-3538 (1982).
    [64] Lin C. F., Wu C. C., Yang P. H., and Kuo T. Y., ”Application of Taguchi Method in Light-Emitting Diode Backlight Design for Wide Color Gamut Displays”, Journal of Display Technology. 5, 323-330 (2009).
    [65] Wang L. K., Shieh J. Y., Lin K. H. and Huang K., “A Two-Stage Taguchi Design Example讣Image Quality Promotion in Miniature Camera/Cell-Phone Lens,” International Journal of Engineering and Technology Innovation. 2, 163-171 (2012).
    [66] Liu T. K., Fang Y. C., Wu B. W., Macdonald J., Chou J. H., Tsai C. M., Lin H. C. and Lin W. T., “Optimization of Optics with Micro Diffractive Optical Element via a Hybrid Taguchi Genetic Algorithm,” Proc. SPIE 7429, 7429F-1-20 (2009).
    [67] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., and Teller E., "Equation of state calculations by fast computing machines," J. Chem. Phys. 21, 1087 (1953).
    [68] Kirkpatrick S., Gelatti C. D. and Vecchi M. P., “Optimization by Simulated Annealing,” Science. 220, 671-680 (1983).
    [69] Sun C. C., Lee T. X., Ma S. H., Lee Y. L., and Huang S. M., “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31(14), 2193–2195 (2006).

    QR CODE