簡易檢索 / 詳目顯示

研究生: 王柏凱
Po-Kai Wang
論文名稱: 改良式模擬退火法於桶槽維護機器人之排程問題
Improved Simulated Annealing Algorithm for Tank Maintenance Robot Scheduling Problem
指導教授: 曹譽鐘
Yu-Chung Tsao
口試委員: 王孔政
Kung-Jeng Wang
許嘉裕
Chia-Yu Hsu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 46
中文關鍵詞: 石化產業啟發式演算法排程問模擬退火法總完工時間最小化
外文關鍵詞: Metaheuristics Algorithm, Minimize Makespan, Petrochemical Industry, Scheduling Problem, Simulated Annealing
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石化產業 (Petrochemical Industry) 中的大型儲存桶槽在防止桶槽外壁與油體反應而引起鏽蝕的需求下,每年需進行檢測和塗層作業。然而,傳統的施工排程方式依賴現場工人的經驗,缺乏準確的數據化作業,導致桶槽的清洗和噴塗作業無法有效地完成。這樣的作業缺乏標準程序和排程效率,且難以精確掌握作業時間。為了克服此排程問題,結合演算法和攀附式機器人 (Wall Climbing Robot, WCR) 可以實現智動化排程的最佳化。因此,本研究旨在開發啟發式演算法,以找出最佳的作業流程,考慮到特定作業之間的優先順序和時間限制,以最小化總完工時間 (Makespan) 為目標,提供最佳的作業建議。本研究藉由攀附式機器人開發商所提供之數據來進行工序排程,考慮到桶槽屬於一整面區域,為了確保作業過程的完整性和有效性,需要明確定義排程並確保其可行性,因此,本研究將桶槽切分為多個區域,並以總完工時間最小化為目標,運用模擬退火法以及改良的模擬退火法,以找出最佳作業建議及最短總完工時間。研究結果顯示,模擬退火法及改良的模擬退火法均能找到最短總完工時間的最佳作業建議,然而,改良的模擬退火法可以在更短得時間內即獲得最佳解,因此能實際應用到石化產業中,增加效率,實現桶槽清洗噴塗作業智動化。


    In the Petrochemical Industry, large oil storage tanks are subject to annual inspection and coating operations to prevent rust caused by the reaction between the tank's exterior wall and the contained substances. However, the traditional operation scheduling approach relies on the experience of on-site workers, which lacks accurate digitalization operations. As a result, the cleaning and coating operations of the oil storage tanks cannot be efficiently completed. If this scheduling problem can be combined with algorithms and wall climbing robot (WCR), the intelligence of scheduling can be realized. Therefore, this study aims to develop a metaheuristics algorithm to determine the optimal workflow, considering the prioritization and time constraints, to minimize makespan. In this study, all the data are provided by the wall climbing robot developer. Considering that the oil storage tank constitutes a continuous surface area, to ensure the integrity and effectiveness of the operations. Therefore, this study divides the tank into multiple blocks and aims to minimize makespan. The original simulated annealing and the improved simulated annealing are employed to find the optimal operational recommendations and minimum makespan. The results show that both the original simulated annealing and improved simulated annealing can be conducted to find the optimal operational recommendations and minimum makespan. However, the improved simulated annealing can obtain the optimal solution in a shorter computation time. Therefore, it can be practically applied to real-life scheduling.

    摘要 I ABSTRACT II ACKNOWLEDGMENTS III CONTENT IV LIST OF FIGURES VI LIST OF TABLES VII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Objective 3 1.3 Research Organization 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 Makespan Minimization Problem 6 2.2 Single-Machine Scheduling Problem 7 CHAPTER 3 MODEL FORMULATION 10 3.1 Problem Definition 10 3.2 Divide Blocks Method 12 3.3 Proposed Heuristics Framework 15 3.3.1 Original Simulated Annealing 15 3.3.2 Improved Simulated Annealing 19 CHAPTER 4 NUMERICAL EXPERIMENTS 23 4.1 Case Description 23 4.2 Computational Results 26 CHAPTER 5 CONCLUSIONS 32 5.1 Summary 32 5.2 Future Research 32 REFERENCE 34

    Choi, S.-W., & Kim, Y.-D. (2008). Minimizing makespan on an m-machine re-entrant flowshop. Computers & Operations Research, 35(5), 1684-1696. https://doi.org/https://doi.org/10.1016/j.cor.2006.09.028
    Graves, S. C., Meal, H. C., Stefek, D., & Zeghmi, A. H. (1983). Scheduling of re-entrant flow shops. Journal of operations management, 3(4), 197-207.
    Hamta, N., & S.M.T., F. G. (2011). SINGLE MACHINE SCHEDULING PROBLEM WITH PRECEDENCE CONSTRAINTS AND DETERIORATING JOBS. International journal of engineering. Transactions A: basics, 24, 115-121.
    Hasani, K., Kravchenko, S. A., & Werner, F. (2014). Simulated annealing and genetic algorithms for the two-machine scheduling problem with a single server. International Journal of Production Research, 52(13), 3778-3792.
    Hnaien, F., Yalaoui, F., & Mhadhbi, A. (2015). Makespan minimization on a two-machine flowshop with an availability constraint on the first machine. International Journal of Production Economics, 164, 95-104. https://doi.org/https://doi.org/10.1016/j.ijpe.2015.02.025
    Huang, Z., Lin, Z., Zhu, Z., & Chen, J. (2020). An Improved Simulated Annealing Algorithm With Excessive Length Penalty for Fixed-Outline Floorplanning. IEEE Access, PP, 1-1. https://doi.org/10.1109/ACCESS.2020.2980135
    Ji, M., He, Y., & Cheng, T. C. E. (2007). Single-machine scheduling with periodic maintenance to minimize makespan. Computers & Operations Research, 34(6), 1764-1770. https://doi.org/https://doi.org/10.1016/j.cor.2005.05.034
    Ji, M., Yang, Y., Duan, W., Wang, S., & Liu, B. (2016, 24-29 July 2016). Scheduling of no-wait stochastic distributed assembly flowshop by hybrid PSO. 2016 IEEE Congress on Evolutionary Computation (CEC),
    Jin, F., Song, S., & Wu, C. (2009). A simulated annealing algorithm for single machine scheduling problems with family setups. Computers & Operations Research, 36(7), 2133-2138. https://doi.org/https://doi.org/10.1016/j.cor.2008.08.001
    Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. https://doi.org/https://doi.org/10.1002/nav.3800010110
    Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. https://doi.org/doi:10.1126/science.220.4598.671
    Laha, D., & Chakraborty, U. K. (2009). An efficient hybrid heuristic for makespan minimization in permutation flow shop scheduling. The International Journal of Advanced Manufacturing Technology, 44(5), 559-569. https://doi.org/10.1007/s00170-008-1845-2
    Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). Chapter 9 Sequencing and scheduling: Algorithms and complexity. In Handbooks in Operations Research and Management Science (Vol. 4, pp. 445-522). Elsevier. https://doi.org/https://doi.org/10.1016/S0927-0507(05)80189-6
    Lin, S.-W., & Ying, K.-C. (2022). Single machine scheduling problems with sequence-dependent setup times and precedence delays. Scientific Reports, 12(1), 9430. https://doi.org/10.1038/s41598-022-13278-y
    Manjeshwar, P., Damodaran, P., & Srihari, K. (2009). Minimizing makespan in a flow shop with two batch-processing machines using simulated annealing. Robotics and Computer-Integrated Manufacturing, 25, 667-679. https://doi.org/10.1016/j.rcim.2008.05.003
    Mittenthal, J., Raghavachari, M., & Rana, A. I. (1993). A hybrid simulated annealing approach for single machine scheduling problems with non-regular penalty functions. Computers & Operations Research, 20(2), 103-111. https://doi.org/https://doi.org/10.1016/0305-0548(93)90066-R
    Senthilkumar, P., & Narayanan, S. (2011). Simulated Annealing Algorithm to Minimize Makespanin Single Machine Scheduling Problem withUniform Parallel Machines. Intelligent Information Management, Vol.03No.01, 10, Article 3759. https://doi.org/10.4236/iim.2011.31003
    Sung, C. S., & Juhn, J. (2009). Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint. International Journal of Production Economics, 119(2), 392-401. https://doi.org/https://doi.org/10.1016/j.ijpe.2009.03.012
    Wang, J.-b., & Wang, M. (2013). Makespan minimization on three-machine flow shop with deteriorating jobs. Asia-Pacific Journal of Operational Research, 30. https://doi.org/10.1142/S021759591350022X
    Wu, C. C., Hung-Ming, C., Cheng, S. R., Hsu, C. J., & Wu, W. H. (2011, 3-5 Sept. 2011). Simulated annealing approach for the single-machine total late work scheduling problem with a position-based learning. 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management,
    Zoghby, J., Barnes, J., & Hasenbein, J. (2005). Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches. European Journal of Operational Research, 167, 336-348. https://doi.org/10.1016/j.ejor.2004.03.027

    無法下載圖示 全文公開日期 2033/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE