簡易檢索 / 詳目顯示

研究生: 陳信豪
Hsing-Hao Chen
論文名稱: 以氧化還原置換反應製備Pt和PtIr修飾Pd金屬觸媒及其應用
Pt and PtIr Modified Pd Nanocatalyts Prepared by Redox Transmetallation Reaction and Their Applications
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 江志強
Jyh-Chiang Jiang
周澤川
Tza-chuan Chou
杜景順
Jing-shuen Du
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化還原置換反應欠電位沉積單層銅氧氣還原單層雙金屬觸媒
外文關鍵詞: Redox transmetallation reaction, Underpotential deposition monolayer copper (UPD), monolayer bimetallic catalysts, Oxygen reduction reaction(ORR)
相關次數: 點閱:360下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是以氧化還原置換反應製備Pt和PtIr修飾Pd金屬觸媒,並探討其於氧氣還原之催化效能。
於改變UPD ML Cu沉積電位之研究中,Pt(Ⅱ)與UPD ML Cu進行氧化還原置換反應後所得之ML Pt/Pd/C電極,其催化氧氣還原之效能會隨著Pt之負載量增加逐漸提升,而Pt(Ⅱ)與沉積電位為0.3 V之UPD ML Cu進行氧化還原置換反應所得之ML Pt/Pd/C,催化氧氣還原效果達最佳,原因可能為ML Pt覆蓋於Pd表面時,Pd會丟電子給Pt,兩金屬間電子效應有助於降低OH與Pt間之吸引力,進而提高Pt與氧氣之間之作用力,當UPD ML Cu沉積電位更低時,分別為0.28 V與0.27 V,Pt(Ⅱ)與UPD ML Cu進行氧化還原置換反應所製備之ML Pt/Pd/C,其催化氧氣還原效果變差,其原因為第二層Pt沉積於第一層ML Pt表面上或是擴散進入Pd-core內,而導致催化氧氣效能變差。
而於改變UPD ML Cu沉積時間之研究結果中,發現UPD ML Cu沉積時間越短,ML Pt/Pd/C催化氧氣還原效能越差,主要原因為Pt(Ⅱ)與短沉積時間UPD ML Cu進行氧化還原置換反應後,沉積於Pd/C表面之ML Pt不足,亦即過多之Pd裸露於表面,遂而觸媒催化氧氣還原之效能降低。
於單層雙金屬觸媒系統當中,於ML Pt/Pd/C觸媒中添加第三元金屬M ,會提升觸媒催化氧氣還原之效能,其原因為第三元金屬M對於OH基與O基具有強之吸附力,而使OH基於Pt表面之覆蓋率降低,進而提升催化氧氣之效能。於實驗結果中,ML Pt(4)Ir(2)/Pt/Pd/C催化氧氣還原效果為最佳。


Pt and PtIr modified Pd nanocatalysts were prepared by redox transmetallation reaction and studied on the performance of oxygen reduction.
In the case of ML Pt/Pd/C, the redox transmetallation reaction was employed between the Pt(Ⅱ) and the UPD ML Cu on Pd/C with various deposition potential of UPD ML Cu on Pd/C. It was found that the performance of oxygen reduction was gradually improved with the increase of ML Pt loaded on the Pd/C. The highest performance of oxygen reduction was achieved by the ML Pt/Pd/C with UPD ML Cu deposited at the potential of 0.3 V on Pd/C. That may be due to the electronic effects originating from Pt atoms withdrawing electrons from the neighboring Pd atoms, which resulted in the weaker interaction between Pt and OH, and subsequently enhanced the interaction between Pt and O2. The ML Pt/Pd/C by redox transmetallation between Pt(Ⅱ) and UPD ML Cu deposited at the potential of 0.28 V and 0.27 V exhibited the worse perforrmance for oxygen reduction. The enhancement effect was lower, when Pt began to form multilayers on the surface or diffused into the Pd core.
Considering the effect of various deposition time of UPd ML Cu on Pd/C for ML Pt/Pd/C to the performance of oxygen reduction, the catalyst prepared by shorter deposition time behaved the worse performance of oxygen reduction. The main effect was caused by the less amount of ML Pt deposited on the Pd/C, which resulted in the more amount of Pd atoms exposing to the surface, and therefore worse performance of oxygen reduction was shown.
The performance of oxygen reduction was investigated by mixed ML on Pd/C catalysts. The results showed great enhancement for oxygen reduction by the incorporation of ML PtIr with Ir atoms adsorbing OH or O strongly, resulting in the decrease of Pt-OH coverage. The ML Pt(4mM)Ir(2mM)/Pd/C possessed the highest performance of oxygen reduction in the system of mixed monolayer/Pd/C catalysts.

摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XIII 表目錄 XXV 第一章 緒 論 1 1.1 前言 1 1.2 直接甲醇燃料電池(DMFC) 6 1.2.1 DMFC陽極觸媒 8 1.2.1.1 DMFC陽極觸媒材料 10 1.2.2 DMFC電解質 12 1.2.3 DMFC陰極材料 13 1.3 UPD金屬修飾貴金屬電極 14 1.4 UPD CU簡介 18 1.5 研究動機與目的 24 第二章 原理 25 2.1 XRD分析原理 25 2.2 電化學原理 27 2.2.1 循環伏安法 27 2.2.2 極化曲線 31 2.2.3 旋轉盤電極(Rotating Disc Electrode, RDE) 32 第三章 實驗設備與方法 37 3.1 實驗藥品及設備 37 3.1.1 實驗藥品 37 3.1.2 儀器設備 38 3.2實驗方法 38 3.2.1製備觸媒漿料 38 3.2.2 製備0.5 M硫酸 39 3.2.3設備清潔 40 3.2.4滴觸媒漿料於RDE (Rotating Disk Electrode)表面之程序 40 3.2.5電化學測試槽之製備 41 3.2.6電化學量測步驟 42 3.2.6.1不同Cu之濃度修飾Pd/C/Nafion電極表面 42 3.2.6.1.1 Pd/C/Nafion之循環伏安 42 3.2.6.1.2 UPD ML Cu之沉積與脫附 43 3.2.6.2 Pt(Ⅱ)與不同沉積電位之UPD Cu進行以氧化還原反應置換修飾Pd/C/Nafion電極表面 45 3.2.6.2.1 Pd/C/Nafion之循環伏安 45 3.2.6.2.2 UPD Cu之循環伏安及其沉積與脫附 45 3.2.6.2.3單層鉑修飾Pd/C/Nafion電極 46 3.2.6.2.4 ML Pt/Pd/C/Nafion之循環伏安 46 3.2.6.2.5氧氣還原 46 3.2.6.3. Pt(Ⅱ)與不同沉積時間之UPD Cu進行氧化還原反應置換修飾Pd/C/Nafion電極 48 3.2.6.3.1 Pd/C/Nafion之循環伏安 48 3.2.6.3.2 UPD Cu之循環伏安及其沉積與脫附 48 3.2.6.3.3單層鉑修飾Pd/C/Nafion電極 49 3.2.6.3.4 ML Pt/Pd/C/Nafion之循環伏安 49 3.2.6.3.5氧氣還原 49 3.2.6.4 單層雙金屬( ML PtIr)修飾Pd/C/Nafion電極 51 3.2.6.4.1 Pd/C/Nafion之循環伏安 51 3.2.6.4.2 UPD Cu之循環伏安及其沉積與脫附 51 3.2.6.3.3單層雙金屬(ML PtIr)修飾Pd/C/Nafion電極 52 3.2.6.4.4 ML PtIr/Pd/C/Nafion之循環伏安 52 3.2.6.4.5氧氣還原 52 第四章 結果 55 4.1 XRD 分析結果 56 4.2 電化學特性分析 57 4.2.1 不同Cu濃度修飾之Pd/C/Nafion觸媒 57 4.2.2 Pt(Ⅱ)與不同沉積電位下之UPD ML Cu進行氧化還原置換反應製備ML Pt/Pd/C 63 4.2.2.1 氧氣還原(Oxygen reduction reaction, ORR) 77 4.2.3 Pt(Ⅱ)與沉積電位為0.3 V不同沉積時間下之UPD ML Cu進行氧化還原置換反應製備ML Pt/Pd/C 80 4.2.3.1 氧氣還原反應(ORR) 84 4.2.3.2 氧氣還原反應(ORR) 92 4.2.4 Pt(Ⅱ)(4mM)Ir(Ⅲ)(XmM)與UPD ML Cu進行氧化還原置換反應製備ML PtIr/Pd/C 94 4.2.4.1 氧氣還原反應 (Oxygen reduction reaction) 98 第五章 討論 101 第六章 結論 105 第七章 參考文獻 107 第八章 附錄 113

[1] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel Cells - Fundamentals and Applications," Fuel Cells, vol. 1, p 5, 2001.
[2] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, and E. D. Gilles, "Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis," Chemical Engineering Science, vol. 56, pp. 333-341, 2001.
[3] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, "Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells," Journal of Physical Chemistry B, vol. 107, pp. 6292-6299, 2003.
[4] A. Hubert, N. Gasteiger, N. M. Markvoic, N. Philip, and P. N. Ross, "H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects," vol., 1995.
[5] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, "A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst," Journal of Physical Chemistry B, vol. 105, pp. 8097-8101, 2001.
[6] G. T. Burstein, C. J. Barnett, A. R. Kucernak, and K. R. Williams, "Aspects of the anodic oxidation of methanol," Catalysis Today, vol. 38, pp. 425-437, 1997.
[7] T. Frelink, W. Visscher, and J. A. R. van Veen, "On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt," Surface Science, vol. 335, pp. 353-360, 1995.
[8] H. A. Gasteiger, N. Markovic, P. N. Ross Jr, and E. J. Cairns, "Methanol electrooxidation on well-characterized Pt-Ru alloys," Journal of Physical Chemistry, vol. 97, pp. 12020-12029, 1993.
[9] J. B. R. Rauhe, F. R. McLarnon, and E. J. Cairns, "Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate," Journal of The Electrochemical Society, vol. 142, pp. 1073-1084, 1995.
[10] S. R. Brankovic, N. S. Marinkovic, J. X. Wang, and R. R. Adz?ic, "Carbon monoxide oxidation on bare and Pt-modified Ru(101?0) and Ru(0001) single crystal electrodes," Journal of Electroanalytical Chemistry, vol. 532, pp. 57-66, 2002.
[11] C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, and A. Wieckowski, "UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts," Journal of Physical Chemistry B, vol. 106, pp. 9581-9589, 2002.
[12] A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, "Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells," Journal of Electroanalytical Chemistry, vol. 563, pp. 181-190, 2004.
[13] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K. L. Ley, E. S. Smotkin, Y. E. Sung, H. Kim, S. Thomas, and A. Wieckowski, "Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes," Journal of Physical Chemistry B, vol. 104, pp. 3518-3531, 2000.
[14] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, and W. Vielstich, "Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation," Journal of Physical Chemistry B, vol. 103, pp. 6968-6977, 1999.
[15] B. Beden, F. Kadirgan, C. Lamy, and J. M. Leger, "Electrocatalytic oxidation of methanol on platinum-based binary electrodes," J. Electroanal. Chem., vol. 127, 1981.
[16] C. J. Zhong and M. M. Maye, "Core-shell assembled nanoparticles as catalysts," Advanced Materials, vol. 13, pp. 1507-1511, 2001.
[17] A. Hamnett, "Mechanism and electrocatalysis in the direct methanol fuel cell," Catalysis Today, vol. 38, pp. 445-457, 1997.
[18] K. Ledjeff-Hey and A. Heinzel, "Critical issues and future prospects for solid polymer fuel cells," Journal of Power Sources, vol. 61, pp. 125-127, 1996.
[19] L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells: Principles, types, fuels, and applications," ChemPhysChem, vol. 1, pp. 163-193, 2000.
[20] M. Watanabe, Y. Furuuchi, and S. Motoo, "Electrocatalysis by ad-atoms. Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells," Journal of Electroanalytical Chemistry, vol. 191, pp. 367-375, 1985.
[21] M. Watanabe, M. Uchida, and S. Motoo, "Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol," Journal of Electroanalytical Chemistry, vol. 229, pp. 395-406, 1987.
[22] D. Chu and S. Gilman, "Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures," Journal of the Electrochemical Society, vol. 143, pp. 1685-1690, 1996.
[23] R. Venkataraman, H. R. Kunz, and J. M. Fenton, "Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells," Journal of the Electrochemical Society, vol. 150, pp. A278-A284, 2003.
[24] K. L. Ley, R. Liu, C. Pu, Q. Fan, N. Leyarovska, C. Segre, and E. S. Smotkin, "Methanol oxidation on single-phase Pt-Ru-Os ternary alloys," Journal of the Electrochemical Society, vol. 144, pp. 1543-1548, 1997.
[25] E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, "Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts," Science, vol. 280, pp. 1735-1737, 1998.
[26] A. S. Aric, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, and V. Antonucci, "Investigation of a carbon-supported quaternary Pt---Ru---Sn---W catalyst for direct methanol fuel cells," Journal of Power Sources, vol. 55, pp. 159-166, 1995.
[27] W. C. Choi, J. D. Kim, and S. I. Woo, "Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry," Catalysis Today, vol. 74, pp. 235-240, 2002.
[28] G. Herzog and D. W. M. Arrigan, "Determination of trace metals by underpotential deposition-stripping voltammetry at solid electrodes," TrAC - Trends in Analytical Chemistry, vol. 24, pp. 208-217, 2005.
[29] G. Kokkinidis, "UNDERPOTENTIAL DEPOSITION AND ELECTROCATALYSIS," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 201, pp. 217-236, 1986.
[30] A. R., A. N. M. M., and Y. E., "Oxygen Reduction on Electrodes Surfaces Modified by Underpotential Deposited Species, hallium on Gold," J. Electroanal. Chem., vol. 159, 1983.
[31] A. R. R. and D. A. R., "Electrocatalysis by Foreign metal Monolayers Oxidation of Formic Acid on Palladium," J. Electranal. Chem., vol. 92, 1978.
[32] K. Juttner, "Oxygen Reduction Electrocatalysis by Underpotentital Deposition Metal Atoms at Different Single Crystal Faces of Gold and Silver," J. Electroanal. Chem., vol. 29, 1985.
[33] S. A. A. E., S. H. M., and Mousa M. N. H., "Electrocatalytic Oxidation of Formic Acid on Pt Binary and Ternary Electrodes in H3PO4," J. Electroanal. Chem., vol. 362, 1993.
[34] F. T., V. W., and Veen J. A. R. V., "The Effect of Sn on Pt/C Catalysts for The Methanal Electro-Oxidation," Electrochim. Acta., vol. 329, 1994.
[35] J. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, and R. R. Adzic, "Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics," Journal of the American Chemical Society, vol. 127, pp. 12480-12481, 2005.
[36] T. Chierchie and C. Mayer, "Voltammetric study of the underpotential deposition of copper on polycrystalline and single crystal palladium surfaces," Electrochimica Acta, vol. 33, pp. 341-345, 1988.
[37] J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, and R. R. Adzic, "Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles," Journal of Physical Chemistry B, vol. 108, pp. 10955-10964, 2004.
[38] A. Cuesta, L. A. Kibler, and D. M. Kolb, "Method to prepare single crystal electrodes of reactive metals: application to Pd(hkl)," Journal of Electroanalytical Chemistry, vol. 466, pp. 165-168, 1999.
[39] 彭文權, 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒, 元智大學, 1997.
[40] T. D. Tran and S. H. Langer, "Electrochemical measurement of platinum surface areas on particulate conductive supports," Analytical Chemistry, vol. 65, pp. 1805-1807, 1993.
[41] N. M. Markovic´, B. N. Grgur, C. A. Lucas, and P. N. Ross, "Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions," J. Phys. Chem. B, vol. 103, p 487, 1999.
[42] 胡啟章, 電化學原理與方法, 五南圖書出版公司, 2002.
[43] J. Yang, Y. Lee J, Q. Zhang, W. Zhou, and Z. Liu, "Carbon-Supported Pseudo-Core-Shell Pd-Pt Nanoparticles for ORR with and without Methanol " Journal of The electrochemical Society, vol. 155, p B776, 2008.
[44] S. Y., L. Zhang, and J. Lu, "First principle Consideration in the Design of Pd-Alloy Catalysts for Oxygen Redution," Angew chem. Int. Ed., vol. 46, p 2862, 2007.

QR CODE