簡易檢索 / 詳目顯示

研究生: 謝華生
Hua-Sheng Xie
論文名稱: 應用於電池儲能系統之快速電量平衡控制策略
A Fast Charge Balance Control Strategy for Battery Energy Storage Systems
指導教授: 羅一峰
Yi-Feng Luo
劉益華
Yi-Hua Liu
口試委員: 陳冠炷
Guan-Jhu Chen
鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jen Chiu
羅一峰
Yi-Feng Luo
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 儲能系統充放電平衡控制策略雙向直流轉直流降/升壓轉換器電池管理系統
外文關鍵詞: Energy Storage System, Charge-Discharge Balancing Control Strategy, Bidirectional DC-DC Converter, Battery Management System
相關次數: 點閱:257下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電池組需用到大量的電池來組成,但同型號的電池各自還是有著不同的特性如自放率、內阻與溫度等,都會有些許差異而導致電池之間容量或電壓不平均,進而影響電池組充放電的效率不佳,無法有效的利用電池組的電量,為了解決此問題,需要透過電池平衡器來使電池組之間保持平衡。
    本文所研製之四組雙向直流轉直流降/升壓轉換器,當容量差異過大時會啟動平衡機制,根據電池狀態,在放電時分配負載功率來延長系統使用時間,充電時分配充電電流使充電結束時各個電池皆達滿電狀態,藉此在充放電過程中皆能完成平衡。然而,平衡係數若採累加制進行運算,容易會有平衡後期平衡速度下降的問題,為了加快平衡速度,本論文對此方法進行改善並透過調整輸出電壓範圍、責任週期變動量範圍和平衡係數的計算方式來使平衡速度加快。
    在放電模式下,根據輸出電壓範圍和平衡係數的計算方式不同分為三組平衡實驗和一組無平衡實驗,共四組實驗。輸出電壓範圍不同時,所提技術可節省25.7%時間,加上改善控制法後可節省32%的時間,相較於無平衡實驗放電時間都延長17%左右。在充電模式時,本文考量兩種情境,情境一為低容量情境,總共四組實驗,根據責任週期變動量範圍和平衡係數的計算方式的不同分為三組平衡實驗和一組無平衡實驗。平衡係數的計算方式不同時,所提方法可節省17.8 %的時間,加上調整責任週期變動量範圍技術後可節省29.9 %的時間 情境二為中高容量情境,驗證當其中一顆電池電壓達到4.2 V仍可繼續保持平衡,且充電結束時容量差小於1%。


    The battery pack requires a large number of batteries to be assembled. But the batteries of the same model still exhibit slight differences in characteristics such as self-discharge rate, internal resistance, and temperature, differ slightly, resulting in uneven capacity or voltage distribution. This imbalance affects the efficiency of battery charging and discharging, preventing the effective utilization of the battery pack's capacity. To address this issue, a battery balancer is required to maintain balance among the batteries in the pack.
    In this study, four sets of bidirectional buck-boost DC-DC converters were developed. When the capacity difference exceeds a certain threshold, the balancing mechanism is activated. Based on the battery states, the load power is distributed during discharge to extend the system's usage time, and the charging current is distributed during charging to ensure that all batteries reach full charge by the end of the charging process. This ensures balance throughout the charging and discharging cycles. However, if the balancing coefficient is calculated using cumulative summation, there is a potential issue of decreasing balance speed in the later stages. To accelerate the balancing process, improvements were made to this method by adjusting the output voltage range, duty cycle variation range, and calculation method of the balancing coefficient.
    In the discharge mode, the experiments were divided into three experiments with balancer and one experiment without balancer. The proposed technique saved 25.7 % of the time in different output voltage range scenarios. With the improved control method, the time savings increased to 32%. Compared to the results obtained without balancer, an extension of discharge time by approximately 17% can be achieved. In the charging mode, two scenarios were considered. Scenario 1 involved low-capacity situations, with a total of four experiments. The experiments were also divided into three experiments with balancer and one experiment without balancer The proposed method saved 17.8 % of the time in different balancing coefficient scenarios. With the adjustment of the duty cycle variation range, the time savings increased to 29.9%. Scenario 2 involved medium to high capacity situations, the obtained results verify that the balancing could be maintained even when one battery reached 4.2 V, and the capacity difference at the end of charging was less than 1%.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 1 1.3研究動機及目標 2 1.4論文大綱 3 第二章 鋰離子電池與平衡電路介紹 4 2.1 鋰離子電池名詞介紹 4 2.2 平衡電路種類介紹 6 2.2.1 電阻式平衡器 9 2.2.2 電感式平衡器 9 2.2.3 電容式平衡器 10 2.2.4 轉換器式平衡器 12 第三章 平衡系統介紹 15 3.1 充放電平衡電路介紹 19 3.2 放電模式平衡控制法原理介紹 20 3.2.1剩餘容量估測 20 3.2.2分配係數計算 21 3.2.3轉換器輸出電壓控制 22 3.2.4分配係數上下限考量 22 3.3 放電模式平衡控制策略 24 3.4 充電模式平衡控制法原理介紹 30 3.4.1 SOC平衡控制 31 3.4.2平均電流控制 32 3.4.3責任週期變動量上下限考量 33 3.5 充電模式平衡控制策略 34 第四章 模擬結果 43 4.1 模擬參數設定 43 4.2 放電模式模擬 45 4.3 充電模式模擬 58 4.3.1 情境一—SOC低容量 58 4.3.2 情境二—SOC中高容量 69 第五章 實驗結果與比較 75 5.1 放電實測結果 77 5.2 充電實測結果 87 5.2.1 情境一—SOC低容量 87 5.2.2 情境二—SOC中高容量 95 第六章 結論與未來展望 100 6.1結論 100 6.2未來展望 100 參考文獻 101

    [1]科技政策研究與資訊中心,美國2021-2030年國家鋰電池藍圖與鋰電池回收技術(2021年08月11日)。檢自https://outlook.stpi.narl.org.tw/index/focus-theme/detail?id=4b114100791e3859017b90c2e6e44e5a/ (Dec. 6th, 2021)
    [2]謝騄璘、蔡宜君、呂學隆,「全球電動車市場動向與48V微混系統鋰電池商機剖析」,工業技術研究院,2020年4月21日。
    [3]P. T. Krein and R.S. Balog, “Life Extension Through Charge Equalization of Lead-Acid Batteries,” in Proceedings of the 24th Annual International Telecommunications Energy Conference (INTELEC), pp. 516-523, Sep./Oct. 2002.
    [4]S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Result,” in Proceedings of the 22nd International Telecommunications Energy Conference, pp.439-446, Sep. 2000.
    [5]N. H. Kutkut, H. L. N. Wiegman, D. M. Divan and D. W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” IEEE Symposium on Industrial Electronics and Applications, Vol. 35, No. 1, pp. 28-35, Jan./Feb. 1999.
    [6]S. Hong, J. Jiang and X. Li, “A Battery Management System with Two-Stage Equalization,” in 29th Chinese Control and Decision Conference, 2017.
    [7]H. Oman, “Making Batteries Last Longer,” IEEE Aerospace &Electrics Systems Magazine, Vol. 14, No. 9, pp. 19-21, 1999.
    [8]L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A Review on the Key Issues for Lithium-ion Battery Management in Electric Vehicles,” Journal of Power Sources, Vol. 226, pp. 272-288, Mar. 2013.
    [9]B. S. Sagar, B. P. Divakar and K. S. V. Prasad, “Series Battery Equalization using Sequential Difference Algorithm,” Advances in Electronics, Computers and Communications (ICAECC), 2014 International Conference, pp.1-6, 2014.
    [10]T. A. Stuart and W. Zhu, “Modularized Battery Management for Large Lithium-ion Cells,” Journal of Power Sources, Vol.196, No.1, pp.458-464, 2011.
    [11]Y. Lee, S. Jeon and S. Bae, “Comparison on Cell Balancing Methods for Energy Storage Applications,” ResearchGate , vol.9, May. 2016.
    [12]W. Luo, L. Jie, W. Song and Z. Feng, “Study on Passive Balancing Characteristics of Serially Connected Lithium-ion Battery String,” in 13th International Conference on Electronic Measurement & Instruments, 2017.
    [13]J. G. Lozano, E. R. Cadaval, M. I. M. Montero, M. A. G.Martinez, “A Novel Active Battery Equalization Control with on-line Unhealthy Cell Detection and Cell Change Decision,” Journal of Power Sources, Vol.299, pp.356-370, 2015.
    [14]P. A. Cassani and S. S. Williamson, “Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, pp. 3956-3962, Dec. 2010.
    [15]W. C. Lee and D. Drury, “Development of a Hardware-in-the-Loop Simulation System for Testing Cell Balancing Circuits,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5949-5959, Dec. 2013.
    [16]D. D. Quinn and T. T. Hartley, “Design of Novel Charge Balancing Networks in Battery Packs,” Journal of Power Sources, vol.240, pp.26-32, 2014.
    [17]P.H.LA, H.H.Lee and S.J.Choi. “A Single-Capacitor Equalizer Using Optimal Pairing Algorithm for Series-Connected Battery Cells,” 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019.
    [18]Y. Ye and K. W. E. Cheng, “An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings,” Energies, vol.9, no.3, pp.1-15, Feb. 2016.
    [19]M. Y. Kim, C. H. Kim, J. H. Kim and G. W. Moon, “A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 3989-3999, Aug. 2014.
    [20]D. H. Zhang, G. R. Zhu, S. J. He, S. Qiu, Y. Ma, Q. M. Wu and W. Chen, “Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point,” Energies, Vol. 8, No. 3, pp. 1830-1847, Mar. 2015.pp.4906-4913, 2015.
    [21]J. Xu, S. Li, C. Mi, Z. Chen and B. Cao, “SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count,” Energies,Vol.6, No.6, pp.2726-2740, 2013.
    [22]B. Dong, Y. Li and Y. Han, “Parallel Architecture for Battery Charge Equalization,” IEEE Transactions on Power Electronics, Vol.30, No.9, pp.4906-4913, 2015.
    [23]Y. S. Lee and G. T. Chen, “ZCS bi-directional DC-to-DC Converter Application in Battery Equalization for Electric Vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.4, pp.2766-2772, 2004.
    [24]F. Peng, H. Wang and L. Yu, “ A Hierarchical ZVS Battery Equalizer Based on Bipolar CCM Buck-Boost Units,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018.
    [25]S. H. Park, T. S. Kim, J. S. Park, G. W. Moon and M. J. Yoon, “A New Battery Equalizer Based on Buck-Boost Topology,” IEEE 7th International Conference on Power Electronics, pp.962-965, 2007.
    [26]W. Ji, X. Lu, Y. Ji, Y. Tang, F. Ran and F. Z. Peng, “Low Cost Battery Equalizer using Buck-Boost and Series LC Converter with Synchronous Phase-Shift Control” in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp.1152-1157, 2013.
    [27]J. Yan, Z. Cheng, G. Xu, H. Qian and Y. Xu, “Fuzzy Control for Battery Equalization Based on State of Charge” Vehicular Technology Conference Fall (VTC 2010-Fall), pp.1-7, 2010.
    [28]S.K.Dam and V.John , “ Low-Frequency Selection Switch Based Cell-to-Cell Battery Voltage Equalizer With Reduced Switch Count ” IEEE Transactions on Industry Applications, vol. 57, pp.3842-3851, 2021.
    [29]W. Huang and J. A Qahouq, “Energy Sharing Control Scheme for State-of-Charge Balancing of Distributed Battery Energy Storage System” IEEE Transactions on Industrial Electronics, vol.62, pp.2764-2776, 2014.
    [30]Y. Cao and J. A Qahouq, “Hierarchical SOC Balancing Controller for Battery Energy Storage System” IEEE Transactions on Industrial Electronics, vol.68, pp.9386-9397, 2020.
    [31]Y. D Yang, K. Y Hu and C. H Tsai, “Digital Battery Management Design for Point-of-Load Applications With Cell Balancing” IEEE Transactions on Industrial Electronics, vol.67, pp.6365-6375, 2019.
    [32]J. A Qahouq, L Zhang, Y Cao and B Balasubramanian, “DC-DC Power Converter Controller for SOC Balancing of Paralleled Battery System” 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 2016.
    [33]Y. Cao and J. A Qahouq, “Evaluation of Paralleled Battery System with SOC Balancing and Battery Impedance Magnitude Measurement” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 2018.
    [34]鄭安淇,「應用於儲能系統之充放電平衡控制策略」,國立台灣科技大學電機工程所碩士學位論文,民國一百一十一年六月。
    [35]孫清華編譯,「最新可充式電池技術大全」,全華科技圖書,民國九十二年九月。
    [36]李世興編譯,「電池活用手冊」,全華科技圖書,民國八十五年一月。
    [37]屠海令編譯,「先進電池:電化學電源導論」,冶金工業出版社,民國九十五年五月。
    [38]立錡科技,鋰離子電池及電池電量計介紹。檢自https://www.richtek.com/Design%20Support/Technical%20Document/AN024?sc_lang=zh-TW/ (Jun. 6th, 2021)
    [39]Z. Xia and J. A Qahouq, “State-of-Charge Balancing of Lithium-Ion Batteries With State-of-Health Awareness Capability” IEEE Transactions on Industry Applications, vol.57, pp.673-684, 2020.
    [40]鄭偉呈,「基於類神經網路之鋰離子電池健康狀態估測技術研究」,國立台灣科技大學電機工程所碩士學位論文,民國一百一十年七月。
    [41]吳義利編譯,「切換式電源轉換器」,文笙書局,民國一百零九年。
    [42]呂文隆、張簡士琨、曾國境編譯,「交換式電源設計」,全華科技圖書,2012。
    [43]PSIM User's Guide, Powersim Inc., 2003.
    [44]Panasonic Inc., “Lithium Ion Battery-NCR18650” Specification of product, ver. 13.11 R1, 2012.
    [45]Samsung Inc., “Lithium Ion Battery-ICR18650-26J” Specification of product, ver. 2.0, 2016.
    [46]王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90年。
    [47]廖柏涵,「以剩餘容量為基礎之鋰離子電池平衡電路」,國立台灣科技大學電機工程所碩士學位論文,民國一百零七年一月。
    [48]林韋盛,「可縮短平衡時間之鋰離子電池組平衡器」,國立台灣科技大學電機工程所碩士學位論文,民國一百零八年六月。
    [49]李昱伸,「鋰電池主動式平衡器研製」,國立台灣科技大學電機工程所碩士學位論文,民國一百一十年一月。

    QR CODE