簡易檢索 / 詳目顯示

研究生: 曾睿瑩
Ruei-Ying Zeng
論文名稱: 評估方波形收集電極結構深度和間距對二階靜電集塵器收集效率之影響
Evaluating the Effects of Depth and Width of Square-Wave Collecting Electrode on Collection Efficiency of a Two-Stage ESP
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 田維欣
Wei-Hsin TIEN
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 58
中文關鍵詞: 靜電集塵器方波形收集電極收集效率
外文關鍵詞: Electrostatic Precipitator, Square-wave Collecting Electrode, Collection Efficiency
相關次數: 點閱:342下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代化社會中,生活人們待在室內活動的時間增加,加上對於懸浮微粒對人體造成的危害意識高漲,人們倍加重視如何提升室內空氣品質。除了一般商業建築外,製藥業、食品加工業、動物實驗室、和醫院等都需要能夠處理大氣流量的空氣清淨設備。建築的空調系統中,空間有限且工作氣流大,當中的空氣清淨設備需要兼具經濟和噪音控制,靜電集塵的技術可以達到此要求。在有限的空間和高氣流速度下,具有平板收集電極的傳統靜電集塵器的收集效率會顯著地下降。然而,將平板收集電極改為方波結構不但能增加質量收集效率,也能抑制高風速下微粒的再迴流。為了探討方波結構在不同氣流速度下對細懸浮微粒的影響,本論文引用 Stoke Number(慣性力與黏滯力比值)和 Electrostatic Number(靜電力與黏滯力比值)討論方波結構的深度和間距如何影響不同粒徑微粒的收集效率。結果發現風速越低、微粒粒徑越大,方波結構利於微粒的收集,1 μm 和 3 μm 的微粒在 7 m/s 的風速下收集效率超過 84%。方波結構的深度和間距決定迴流區大小、迎風側的收集面積、平均電場強度、和方波邊角的局部電場。較大的迴流區有助於 Stoke Number 小的微粒被收集;方波結構深度越深、間距越窄,有助於 Stoke Number 大的微粒在方波的迎風側被收集;方波結構深度越淺、間距越窄,收集區的平均電場強度越強,Electrostatic Number 大的微粒容易被收集;方波結構深度越深、間距越寬,方波邊角局部的電場強度增強,能使帶電的微粒轉向,有更高的機率進入迴流區,增加收集效率。


In modern society, people spend more time indoors. With the increasing awareness of the harm
caused by suspended particles to the human body, people pay more attention to how to improve
indoor air quality. In addition to general commercial buildings, the pharmaceutical industry, the
food processing industry, animal laboratories, and hospitals all require air purification equipment that can efficiently handle the big airflow. However, the air-conditioning system in the
building is set in limited space and use high working air velocity. The air cleaning equipment
needs to be economical and noise controllable. The electrostatic precipitation technology can
meet these requirements. The collection efficiency of a conventional electrostatic precipitator with a plate collecting electrode will decrease significantly under the conditions of being
built in limited space and working with high air velocity. However, changing the plate collecting electrode to a square-wave structure can not only increase the mass collection efficiency
but also suppress the re-entrainment of particles under high airflow velocity. In order to explore the influence of the square-wave structure on fine particulate matters at different airflow
velocity, this paper quotes the Stoke Number (the ratio of inertial force to air resistance) and
Electrostatic Number of particles (the ratio of electric force to air resistance) to discuss the impact of the depth and width of the square-wave structure on the collection efficiency of particles
in different size. The results show that square-wave structure performs well as flow velocity
gets higher or particle gets larger. The collection efficiency of 1 μm and 3 μm particles at 7
m/s is over 84%. The depth and width of the square-wave structure determine the size of the recirculation zone, the collection area on the upstream wall, the average electric field strength,
and the local electric field at the corners of the square wave. A larger recirculation zone helps
collect particles with a small Stoke Number; the deeper the depth and narrower the width of the
square-wave structure benefits the collection efficiency of particles with large Stoke Number
on the upstream wall of the square wave; the shallower the depth and narrower the width of
the square-wave structure creates a stronger average electric field in the collection area, and
the particles with large Electrostatic Number are easier to be collected; the deeper and wider
the structure leads to the increasing local electric field at the corners of the square wave, which
makes the charged particles turn and get more chance to enter the recirculation zone, increasing
collection efficiency.

第 1 章 緒論 1.1 研究背景 1.1.1 空氣汙染 1.1.2 室內空氣品質 1.1.3 空氣過濾器 1.2 文獻回顧 1.3 研究目的 1.4 論文架構 第 2 章 實驗設置與方法 2.1 實驗原理 2.1.1 電暈放電 2.1.2 微粒充電機制 2.1.3 收集效率 2.2 實驗方法與設計 2.2.1 因子設計 2.2.2 雷諾數 2.2.3 變異數分析 2.2.4 電場強度數值模擬 2.3 實驗設置 2.3.1 整流區 2.3.2 風速測試區 2.3.3 靜電集塵器 2.3.4 取樣區和風扇 2.4 實驗流程 2.4.1 微粒濃度 2.4.2 充電區與收集區電流電壓特性曲線 2.4.3 流場平均速度 2.4.4 收集效率測試 2.5 實驗儀器 第 3 章 結果與討論 3.1 收集區結構之特徵長度與 Stoke Number 3.2 收集區之電場強度與 Electrostatic Number 3.2.1 平均電場 3.2.2 Electrostatic Number 3.3 方波邊角局部電場強度模擬 3.4 收集效率 第 4 章 結論與建議 4.1 結論 4.2 建議與未來工作 參考文獻

[1] WHO, “PHE Infographics: Air pollution Clean Air for Health,” 2020.
[2] J. Watson, “Visibility: Science and Regulation,” Journal of the Air & Waste Management
Association, vol. 52, pp. 628–713, 2002.
[3] Y. J. Suh and S. S. Kim, “Effect of obstructions on the particle collection efficiency in a
two-stage electrostatic precipitator,” Journal of Aerosol science, vol. 27, no. 1, pp. 61–74,
1996.
[4] T.-Y. Wen and Q.-Z. Xue, “Capturing heavy loading microparticles using electrostatic precipitator with square-wave collecting electrode,” Powder Technology, vol. 361, pp. 520–
528, 2020.
[5] W. C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne
particles. John Wiley & Sons, 1999.
[6] IARC, “IARC: Outdoor air pollution a leading environmental cause of cancer deaths,”
2013.
[7] WHO, “Air pollution,” 2020.
[8] 黃郁楊, 黃麗煌, and 社團法人台灣環境教育協會, 【彩色圖解】戰勝 PM2.5!越來越多的
疾病可能與空污有關. 台灣: 行政院環境保護署, 2018.
[9] W. F. Stoecker and J. W. Jones, “Compressors,” Refrigeration and Air Conditioning, 2nd
ed.; McGraw-Hill, Inc.: New York, USA, 1982.
[10] J. L. Barber, G. O. Thomas, G. Kerstiens, and K. C. Jones, “Current issues and uncertainties in the measurement and modelling of air–vegetation exchange and within-plant
processing of POPs,” Environmental Pollution, vol. 128, no. 1-2, pp. 99–138, 2004.
[11] P. K. Rai, Biomagnetic Monitoring of Particulate Matter. Elsevier, 2016.
[12] A. Mizuno, “Electrostatic precipitation,” IEEE Transactions on Dielectrics and Electrical
Insulation, vol. 7, no. 5, pp. 615–624, 2000.
[13] G. Bacchiega, I. Gallimberti, V. Arrondel, N. Caraman, and M. Hamlil, “Back-corona
model for prediction of ESP efficiency and voltage-current characteristics,” X ICESP,
Cairns–Australia, 2006.
[14] G. Mainelis, K. Willeke, A. Adhikari, T. Reponen, and S. A. Grinshpun, “Design and
collection efficiency of a new electrostatic precipitator for bioaerosol collection,” Aerosol
Science & Technology, vol. 36, no. 11, pp. 1073–1085, 2002.
[15] T.-Y. Wen and J.-L. Su, “Corona discharge characteristics of cylindrical electrodes in a
two-stage electrostatic precipitator,” Heliyon, vol. 6, no. 2, p. e03334, 2020.
[16] D. G. Poppendieck, D. Rim, and A. K. Persily, “Ultrafine particle removal and ozone
generation by in-duct electrostatic precipitators,” Environmental science & technology,
vol. 48, no. 3, pp. 2067–2074, 2014.
[17] D. Brocilo, Electrode geometry effects on the collection efficiency of submicron and ultrafine dust particles in wire-plate electrostatic precipitators. PhD thesis, Ph.D. Thesis,
McMaster University, 2003.
[18] Q.-Z. Xue and T.-Y. Wen, “Separating al2o3 particles from high-speed flue gas by an
induced flow recirculation in two-stage electrostatic precipitator,” Separation and Purification Technology, vol. 234, p. 116105, 2020.
[19] M. Goldman, A. Goldman, and R. S. Sigmond, “The corona discharge, its properties and
specific uses,” Pure and Applied Chemistry, vol. 57, no. 9, pp. 1353–1362, 1985.
[20] T.-Y. Wen, High-Efficiency Electrostatic Precipitators. PhD thesis, Ph.D. Thesis, University of Washington Seattle, 2015.
[21] W. Deutsch, “Bewegung und ladung der elektrizitätsträger im zylinderkondensator,” Annalen der Physik, vol. 373, no. 12, pp. 335–344, 1922.
[22] Y. A. Cimbala John M, Fluid mechanics : fundamentals and applications (1st ed.). Boston:
McGraw-Hill Higher Education, 2006.
[23] E. Ower and R. Pankurst, The measurement of air flow,by E.Ower and RC Pankhurst.
1977.
[24] H. Lu and L. Lu, “Effects of rib spacing and height on particle deposition in ribbed duct
air flows,” Building and environment, vol. 92, pp. 317–327, 2015.
[25] A. Li, G. Ahmadi, R. G. Bayer, and M. A. Gaynes, “Aerosol particle deposition in an
obstructed turbulent duct flow,” Journal of Aerosol science, vol. 25, no. 1, pp. 91–112,
1994.
[26] K. W. Cheong, “Deposition of aerosol particles in ductwork,” Applied energy, vol. 57,
no. 4, pp. 253–261, 1997.

QR CODE