簡易檢索 / 詳目顯示

研究生: 鐘阡語
Chien-Yu Chung
論文名稱: 設計與分析大掃描角度光學相位陣列
Design and Analysis of Silicon-Photonic Optical Phased Arrays for Wide Steering Angles
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
徐世祥
吳肇欣
樊俊遠
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 82
中文關鍵詞: 光學相位陣列光學雷達矽光子天線陣列
外文關鍵詞: optical phased arrays, LiDAR, silicon photonics, optical antenna array
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光學雷達技術的不斷發展,設計高性能的光學雷達系統成為研究的焦點之一。在這些系統中,光學相位陣列在發射和接收光波信號感測器中扮演著至關重要的角色。
    本論文優化了實驗室之前設計的大型光學相位陣列,主要集中在擴大掃描視野範圍和降低加熱引起的熱干擾方面。包括將天線陣列減少至 32 路、縮小天線間距從 9.5 μm 到 4.5 μm,並引入雙向光學天線陣列的設計以及採用了加熱溝槽設計以提高加熱效率,並交錯排列加熱器以減少加熱引起的熱干擾,在增加掃描範圍時也降低天線間距,並成功下線此晶片。
    本論文也著重於量測與分析先前下線於比利時微電子中心(IMEC)製作之16x64 矽光子光學相位陣列,量測結果驗證所有光學開關均顯示在 3.5V 以下的電壓下正常運作,在遠場的量測結果中,波長調動範圍為 1547 nm 至 1570 nm,晶片的涵蓋角度範圍為-18.800 度至 20.406 度,總涵蓋範圍為 39.206 度。量測結果成功驗證了在遠場超過正負 20 度的掃描角度範圍內,根據不同光學天線結構的波長調控效率在 0.144 度/ nm 至 0.153 度/ nm 之間。以平均波長調控效率最小
    的 0.144 度/ nm 為例,16 個光學相位陣列要涵蓋 40 度角度範圍,只需調動範圍為 17.4 nm 的波長。本研究成功驗證了 OPA 在使用小波長時實現大範圍角度調控之特性。


    As optical LiDAR technology continues to advance, the design of highperformance optical LiDAR systems has become a research hot topic. In these systems, optical phased arrays (OPAs) play a crucial role in transmitting and receiving optical signals. This thesis optimizes a previously designed large-scale OPA in our lab, with a primary focus on expanding the scanning field of view and reducing thermal crosstalk. The major design tasks include scaling down the antenna array to 32 channels, decreasing the antenna pitch from 9.5 μm to 4.5 μm, introducing a bidirectional optical antenna array design, and employing trench-based heating structures to enhance heating efficiency. Interleaved arrangement of heaters is implemented to minimize thermal crosstalk, effectively reducing the antenna pitch while expanding the scanning range. This new design was successfully taped out to IMEC for manufacturing.
    This thesis also includes the measurement and analysis of a 16x64 silicon photonics OPA fabricated at the Interuniversity Microelectronics Center (IMEC) in Belgium. Measurement results confirm the normal operation of all optical switches at voltages up to 3.5V. In far-field measurements, within the wavelength tuning range of 1547 nm to 1570 nm, the beam steering can cover an angle range from -18.8∘to 20.4∘,39.206∘in total. Taking the minimum average wavelength tuning efficiency of 0.144∘/nm as an example, achieving a 40∘scanning range for 16 sub-OPAs only requires a wavelength tuning range of 17.4 nm. The final measurement results successfully validate scanning angles exceeding ±20 degrees in the far-field, with wavelength tuning efficiencies ranging from 0.144∘/nm to 0.153∘/nm, showcasing the OPA's capability for large-angle steering with tunable lasers of small wavelength tuning range.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 導論 1 1.1 前言 1 1.2 研究背景與動機 1 1.3 文獻回顧 2 1.4 論文研究方向 7 1.5 論文架構 7 第二章 光學天線陣列基本原理 8 2.1 光柵理論 8 2.1.1 布拉格定律 8 2.2 光學天線陣列遠場映射 9 第三章 元件介紹 11 3.1 多模干涉耦合器 11 3.2 馬赫-曾德爾干涉儀開關 12 3.3 相位位移器 14 3.4 光學天線陣列 15 第四章 元件模擬設計 17 4.1 模擬方法介紹 17 4.1.1 有限時域差分法 17 4.1.2 有限特徵模態法 18 4.2 光學相位陣列 19 4.2.1 光學天線之改版設計 20 4.2.2 IMEC-SiPh-112B 晶片佈局 27 第五章 元件量測結果與分析 33 5.1 量測架構簡介 33 5.1.1 量測架構說明 33 5.1.2 晶片打線及焊接 35 5.2 量測校正與方法 37 5.3 IMEC-SiPh 109A 矽光子晶片量測 43 5.3.1 晶片結構說明 44 5.3.2 光學開關 45 5.3.3 數據分析和討論 46 第六章 結論與未來發展 77 6.1 成果與討論 77 6.2 未來發展方向 78 參考文獻 79 附件 81

    [1] Y. Kim, H. Yoon, J.-B. You, M. Kim, and H.-H. Park, "Wide-Angle BeamSteering Using an Optical Phased Array with Non-Uniform-Width Waveguide Radiators," Photonics, vol. 7, no. 3, pp. 2-8, 2020, doi: 10.3390/photonics7030056.
    [2] Q. Cheng, S. Zheng, Q. Zhang, J. Ji, H. Yu, and X. Zhang, "An integrated optical beamforming network for two-dimensional phased array radar," Optics Communications, vol. 489, pp. 2-8, 2021, doi: 10.1016/j.optcom.2021.126809.
    [3] J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, "Large-scale nanophotonic phased array," Nature, vol. 493, no. 7431, pp. 195-199, Jan 10 2013, doi: 10.1038/nature11727.
    [4] Y. Guo, Y. Guo, C. Li, H. Zhang, X. Zhou, and L. Zhang, "Integrated Optical Phased Arrays for Beam Forming and Steering," Applied Sciences, vol. 11, no. 9, pp. 3-35, 2021, doi: 10.3390/app11094017.
    [5] T. Raj, F. H. Hashim, A. B. Huddin, M. F. Ibrahim, and A. Hussain, "A Survey on LiDAR Scanning Mechanisms," Electronics, vol. 9, no. 5, pp. 1-19, 2020, doi: 10.3390/electronics9050741.
    [6] J. Ctyroky et al., "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides," Opt Express, vol. 26, no. 1, pp. 179-194, Jan 8 2018, doi: 10.1364/OE.26.000179.
    [7] K. K. K. Van Acoleyen, W. Bogaerts, and R. Baets, "Off-chip beam steering using optical phased arrays on silicon-on-insulator," pp. 2-4, 2009.
    [8] S. Chung, H. Abediasl, and H. Hashemi, "A Monolithically Integrated LargeScale Optical Phased Array in Silicon-on-Insulator CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 275-296, 2018, doi: 10.1109/jssc.2017.2757009.
    [9] C. T. P. Steven A. Miller, You-Chia Chang, Xingchen Ji, Oscar A. Jimenez Gordillo, and S. P. R. Aseema Mohanty, Min Chul Shin, Brian Stern, Moshe Zadka, and Michal Lipson, "512-Element Actively Steered Silicon Phased Arrayfor Low-Power LIDAR," , pp. 1-2, 2018.
    [10] C. S. Im, B. Bhandari, K. P. Lee, S. M. Kim, M. C. Oh, and S. S. Lee, "Silicon nitride optical phased array based on a grating antenna enabling wavelength-tuned beam steering," Opt Express, vol. 28, no. 3, pp. 3270-3279, Feb 3 2020, doi: 10.1364/OE.383304.
    [11] C. Sun et al., "Large-Scale and Broadband Silicon Nitride Optical Phased Arrays," IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 6, pp. 1-10, 2022, doi: 10.1109/jstqe.2022.3182306.
    [12] S. Zhao, J. Chen, and Y. Shi, "Dual Polarization and Bi-Directional SiliconPhotonic Optical Phased Array With Large Scanning Range," IEEE Photonics Journal, vol. 14, no. 2, pp. 1-5, 2022, doi: 10.1109/jphot.2022.3153507.
    [13] W. Xu, L. Zhou, L. Lu, and J. Chen, "Aliasing-free optical phased array beamsteering with a plateau envelope," Opt Express, vol. 27, no. 3, pp. 3354-3368, Feb 4 2019, doi: 10.1364/OE.27.003354.
    [14] M. Lucas B. Soldano and Erik C. M. Pennings, "Optical multi-mode interferencedevices based on self-imaging principles and applications," JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 13, pp. 615-625, 1995.
    [15] S. L. L. L.W.Chung, and Y. J. Lin,, "Principles and application of reduced beat length in MMI couplers," pp. 8753-8764, 2006.80
    [16] R. H. and and M. O'Sullivan, Fiber Optic Measurement Techniques. 2009, pp. 129-258.
    [17] B. Kumar and N. Mandal, "Study of an Electro-Optic Technique of Level Transmitter Using Mach-Zehnder Interferometer and Float as Primary Sensing Elements," IEEE Sensors Journal, vol. 16, no. 11, pp. 4211-4218, 2016, doi: 10.1109/jsen.2016.2544960.
    [18] T. H. Shiyang Zhu, Yu Li, Zhengji Xu, Qize Zhong, Yuan Dong, and Navab Singh, "CMOS-compatible Integrated Silicon Nitride Optical Phase Array forElectrically Tunable Off-chip Laser Beam Steering," pp. 1-3, 2019.
    [19] W. G. Dachuan Wu, and Yashs Yi, "Compound period grating coupler for doublebeams generation and steering," , pp. 1-2, 2019.
    [20] T. T. Hiroyuki Ito, Hiroshi Abe and Toshihiko Baba, "WDM Si Photonic crystal beam scanner for high-throughput parallel 3D sensing," presented at the Optics Express, pp. 26145-26155, 2018.
    [21] X.-L. Ye, Y. Zeng, and X. Ding, "Grating Lobe Suppression for Wideband LargeSpacing Beam Scanning Array Using Subarray Null Adjustable Method," IEEE Antennas and Wireless Propagation Letters, pp. 347-350, 2022.
    [22] V. Kumar and A. K. Sahoo, "Side lobe and grating lobe suppression in stepped frequency pulse train using multi-objective optimization algorithms," in 2016 International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Spring), 2016: IEEE, pp. 1-6.
    [23] K. S. Yee, "Numerical solution of initial boundary value problems involvingmaxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. 14, 3, pp. 302-307, 1996.
    [24] B. Zhaoming Zhu and Thomas G, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics express, vol. 10, 17, pp. 853-864, 2002.
    [25] A. Y. Christopher V. Poulton, Zhan Su, Matthew J. Byrd and Michael R. Watts, "Optical Phased Array with Small Spot Size, High Steering Range and Grouped Cascaded Phase Shifters," presented at the Advanced Photonics Congress, pp. 1-3, 2016.
    [26] H. Wang et al., "Broadband silicon nitride nanophotonic phased arrays for wideangle beam steering," Opt Lett, vol. 46, no. 2, pp. 286-289, Jan 15 2021, doi: 10.1364/OL.411820.
    [27] M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, "On-chip platform for a phased array with minimal beam divergence and wide field-of-view," Opt Express, vol. 26, no. 3, pp. 2528-2534, Feb 5 2018, doi: 10.1364/OE.26.002528.
    [28] W.-C. Peng, "Packaging and Characterization of 16x64 Silicon Optical Phase Arrays with Optical Switches," Master, National Taiwan University of Science and Technology, 2022.

    無法下載圖示 全文公開日期 2026/01/25 (校內網路)
    全文公開日期 2026/01/25 (校外網路)
    全文公開日期 2026/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE