簡易檢索 / 詳目顯示

研究生: 周子傑
Chou-Tzu Chieh
論文名稱: 積體化氮化鎵發光二極體與監控發光強度的光偵測器
Integrated GaN-based LED and monitoring photodiode
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 104
中文關鍵詞: 積體化發光二極體與監控光偵測器p-i-n光偵測器耦光率監控響應率發光二極體
外文關鍵詞: ntegrated LED and Monitoring Photodiode, p-i-n Photodiode, Light coupling rate, Monitoring responsivity, LED
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研製積體化氮化鎵發光二極體與監控發光強度的光偵測器,量測其發光二極體基本光電特性、p-i-n光偵測器基本光電特性、p-i-n光偵測器室溫下暗電流以及在與發光二極體不同距離下p-i-n光偵測器所產生的光電流、響應率以及耦光率。
p-i-n光偵測器與發光二極體在不同距離下且發光二極體電流由0 mA增加至2mA,當兩者距離1000μm 時,p-i-n光偵測器光電流約從2.78*10^(-8)安培增加至7.42*10^(-8)安培;當兩者距離2240μm 時,p-i-n光偵測器光電流約從2.53*10^(-10)安培增加至3.60*10^(-8)安培。可得知p-i-n光偵測器所產生的光電流隨者發光二極體電流增加呈線性增加。為了得知p-i-n光偵測器的監控響應率,當p-i-n光偵測器操作在0V偏壓,分別取在2mA的發光二極體光功率及光偵測器測得光電流值,藉由光電流與光功率比值可計算出監控響應率,監控響應率隨著兩者距離增加而下降。接著,我們探討在固定距離下發光二極體光功率與監控響應率關係,發光二極體電流由0 mA增加至2 mA可以發現光功率與響應率作圖可得近乎為一定值關係。其監控響應率在固定距離326μm下,大約在1.2*10^(-4) A/W至1.4*10^(-4) A/W之間。而我們為了得知p-i-n光偵測器對距離不同的發光二極體吸收多少比例的光功率,由於每顆發光二極體的發光效率不完全一樣,我們將發光二極體光功率規一化至1mW,帶入p-i-n光偵測器本身的響應率可得不同距離下入射p-i-n光偵測器的光功率,其與發光二極體光功率的比值定義為耦光率。當發光二極體與p-i-n光偵測元件距離1000μm時,約有0.83%的耦光率;而當發光二極體與p-i-n光偵測器距離5600μm時,僅約有0.01%的耦光率。耦光率隨距離遞減。


In this paper, a photodiode with integrated GaN LED and monitor illuminance is developed, and the basic photoelectric characteristics of the LED the basic photoelectric characteristics of the p-i-n photodetector, and the room temperature of the p-i-n photodiode are measured. The dark current and the photocurrent, responsivity, and light coupling rate produced by the pin photodetector at different distances from the LED.
The p-i-n photodiode and the LED are at different distances and the LED current is increased from 0 mA to 2 mA. When the distance is 1000 μm, the p-i-n photodiode photocurrent is about 2.78*10^(-8)A increased to 7.42*10^(-8) A; when the distance is 2240μm, the photocurrent of the p-i-n photodiode increases from 2.53*10^(-10) to 3.60*10^(-8) A. It can be seen that the photocurrent generated by the p-i-n photodiode increases linearly with the increase of the LED current. In order to know the monitoring responsivity of the p-i-n photodiode, when the p-i-n photodiode operates at 0V bias, the optical power of the LED of 2 mA and the photocurrent measured by the photodiode are respectively taken by the light. The ratio of current to optical power can be used to calculate the monitoring responsivity , and the monitoring responsivity decreases as the distance between the two increases. Next, we discuss the relationship between the optical power of the LED and the monitoring responsivity at a fixed distance. The current of the LED is increased from 0 mA to 2 mA. It can be found that the optical power and the response rate can be almost a certain value. The monitoring responsivity is at a fixed distance of 326 μm, which is between 1.2*10^(-4)A/W to 1.4*10^(-4) A/W. In order to know how much light power the p-i-n photodiode absorbs for different distances of the LED, since the luminous efficiency of each LED is not exactly the same, we will normalize the light power of the LED to 1mW, the responsivity of the p-i-n photodiode can be obtained from the optical power of the incident p-i-n photodiode at different distances, and the ratio of the optical power to the LED is defined as the coupling light ratio. When the LED and the p-i-n photodiode distance is 1000 μm, the coupling light ratio is about 0.83%; and when When the LED and the p-i-n photodiode distance is 5600 μm, only about 0.01% of the light-coupled ratio is obtained. The coupling light rate decreases with distance.

目錄 摘要........... i Abstract......iii 致謝...........iv 目錄.............v 圖目錄..........ix 表目錄.........xiv 第一章 緒論......1 1.1 前言........1 1.2 文獻回顧.....2 1.3 研究動機.....14 第二章 半導體光偵測器原理與特性參數......17 2.1 光偵測器種類和工作原理..............17 2.1.1 p-n光二極體.........19 2.1.2 p-i-n光二極體.......21 2.1.3 蕭基位障光電二極體(Schottky Barrier Photodiode).....23 2.1.4 雪崩光二極體.......25 2.1.5 異質接面光二極體....27 2.1.6 光電晶體...........28 2.2光偵測器檢測參數.......30 2.2.1 量子效率(Quantum Efficiency, QE)....30 2.2.2 響應率(Responsivity, R)......32 2.2.3 響應速度(Responsivity, R)....33 2.2.4 拒斥比(Rejection, Ratio).....33 第三章儀器介紹......................35 3.1製程儀器介紹.....................35 3.1.1 旋轉塗佈機(Spin Coater).......35 3.1.2 光罩對準機(Mask Aligner)......36 3.1.3 電漿輔助化學氣相沉積系統.......37 (Plasma-Enhanced Chemical Vapor Deposition, PECVD).....37 3.1.4 感應耦合電漿式離子蝕刻機(ICP-RIE)..................38 3.1.5 射頻濺鍍機(RF Sputter)...........................40 3.1.6 電子束蒸鍍機(E-beam Evaporator)...............42 3.1.7 快速升溫退火爐(Rapid thermal annealing, RTA)........42 3.2 量測儀器介紹.......................43 3.2.1 光激發螢光(Photoluminescence, PL)量測系統.....43 3.2.2 表面輪廓儀(Alpha step)......................44 3.2.3 L-I與I-V量測系統...........................44 3.2.4 太陽光模擬光源(Solar simulator)I-V量測.......45 3.2.5 外部量子效率量測系統 (Incident Photon to Electron Conversion Efficiency, IPCE)............46 第四章 元件設計與製程.............48 4.1 元件設計與製作...............48 4.2 元件製程.....................50 4.2.1 活化製程(Activation)........52 4.2.2 絕緣製程(Isolation).........52 4.2.3 高台圖型製程(MESA)..........54 4.2.4 二氧化矽絕緣層沉積...........55 4.2.5 ITO透明導電層沉積...........56 4.2.6 N&P型電極沉積...............58 第五章 結果與討論..................61 5.1 氮化鎵LED基本光電特性...........61 5.2 氮化鎵p-i-n光偵測器基本特性.....64 5.3 積體化發光二極體與監控光偵測器(MPD, Monitoring Photodiode)量測.........66 5.3.1 光電流監控與距離關係比較...........................................66 5.3.2 比較距離不同,發光二極體與光偵測器的耦光率........................81 第六章 結論與未來展望..........85 6.1結論....................85 6.2未來展望................87 參考文獻...................88

[1] E.Fred Schubert (2006). Light-emitting diode. Cambridge University Press. New York.
[2] Yongjin Wanga, Yin Xu, Yongchao Yang, Xumin Gao, Bingcheng Zhu, Wei Cai, Jialei Yuan,Rong Zhangb, Hongbo Zhu(2017). Simultaneous light emission and detection of InGaN/GaN multiplequantum well diodes for in-plane visible light communication. Optics Communications 387 ,440–445.
[3] Wei Cai1, Chuan Qin, Shuai Zhang, Jialei Yuan, Fenghua Zhangand Yongjin Wang. Monolithic photonic integrated circuit with a GaN-based bent waveguide.
[4] Kwai Hei Li, Yuk Fai Cheung, Wai Yuen Fu, Kenneth Kin-Yip Wong, & Hoi Wai Choi (2018). Monolithic Integration of GaN-on-Sapphire Light-Emitting Diodes, Photodetectors, and Waveguides. IEEE Journal of Selected Topics in Quantum Electronics., 24, 3801706.
[5] Meixin Feng , Jin Wang, Rui Zhou, Qian Sun , Hongwei Gao, Yu Zhou , Jianxun Liu, Yingnan Huang,Shuming Zhang, Masao Ikeda, Huaibing Wang, Yuantao Zhang, Yongjin Wang , and Hui Yang (2018).On-Chip Integration of GaN-Based Laser, Modulator,and Photodetector Grown on Si Ieee Journal Of Selected Topics In Quantum Electronics24(6) , 820-0305
[6] OZ Optics Corporation,”Directional fiber optic power monitors”, DTS0042 Datasheet,Feb.2018.
[7] KYOSEMI Corporation,”Photodevices for Sensors”,KPEIMC-100 Datasheet,2011
[8] 白世南,光電工程概論.ppt,建國科技大學電子工程系。
[9] S. O. Kasap, Optoelectronics and Photonics:Principles Practices半導體光電元件,全威圖書有限公司,台北,2006。
[10] 劉博文(2005)。光電元件導論。台北市:全威圖書有限公司。
[11] S. O. Kasap(2001). Optoelectronics and Photonics: Principles and Practices.Peason Education Interational.。
[12] 林明勳(2013).自動化觸控面板製造品值預測模式之研究(碩士論文).國立中山大學資訊管理學系。
[13] 施敏(2002)。半導體元件物理與製作技術。國立交通大學出版社。
[14] 甯榮椿(2010).使用感應耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究(碩士論文).國立清華大學材料科學與工程學系。
[15] 廖彥超(2011).有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響(碩士論文).國立台灣科技大學電子工程所。
[16] 王婉瑄(2015).以奈米壓印微影技術研製氮化鎵分佈回饋式雷射(碩士論文).國立台灣科技大學電子工程所。

無法下載圖示 全文公開日期 2024/07/22 (校內網路)
全文公開日期 2024/07/22 (校外網路)
全文公開日期 2024/07/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE