簡易檢索 / 詳目顯示

研究生: Dewi Sartika
Dewi Sartika
論文名稱: Silk Fibroin as a Biocompatible Cradle during Bone Regeneration
Silk Fibroin as a Biocompatible Cradle during Bone Regeneration
指導教授: 洪伯達
Po-Da Hong
程君弘
Juin-Hong Cherng
口試委員: 蔡協致
Hsieh-Chih Tsai
劉正哲
Cheng-Che Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 69
中文關鍵詞: silk fibroin scaffoldadipose stem cellsbone tissue engineeringrat calvarial defect model
外文關鍵詞: silk fibroin scaffold, adipose stem cells, bone tissue engineering, rat calvarial defect model
相關次數: 點閱:418下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bone is a highly dynamic and vascularized tissue that provides vital structural
    support to the body. Bone defects, caused by disease or trauma, are a substantial
    health problem nowadays. The limited efficacy of conventional treatment
    strategies for bone regeneration has inspired the development of scaffold-based
    tissue engineering. In this study, we aimed to analyze the biocompatibility of
    human adipose stem cells (hASCs)-contained silk fibroin (SF) (SF-hASCs)
    scaffold for bone tissue engineering through in vitro and in vivo study. The SF
    scaffold was prepared through lyophilization method. To assess the suitability of
    SF scaffold as an implant for bone regeneration, microstructure and
    morphological characteristic of SF scaffold was examined by Fourier Transform
    Infrared Microscope (FTIR) and Scanning Electron Microscope (SEM). The
    results confirmed that the crystal structure of SF was not influenced during
    lyophilization process and the morphological of scaffold presented a good
    interconnectivity among the pores and an appropriate condition for the
    development of cells inside the scaffold. The in vitro study results assessed by
    MTT Assay and osteogenic differentiation by expression of extracellular matrix
    (ECM) mineralization proved that SF scaffold was non-toxic and provide suitable
    environment for hASCs to proliferated and differentiated into osteoblast. The in
    vivo study which was examined by rat calvarial defect model showed the greatest
    bone formation by SF-hASCs scaffold treatment, exhibited that this scaffold
    biocompatible for in vivo implantation. In line with histological results, calvarial
    defect treated with SF-hASCs scaffold exhibited the functionality of bone
    regeneration showed by more collagen and blood vessels formation. Summarily,
    our in vitro and in vivo study demonstrated that SF-hASCs scaffold can find
    potential applications in bone repair and regeneration.


    Bone is a highly dynamic and vascularized tissue that provides vital structural
    support to the body. Bone defects, caused by disease or trauma, are a substantial
    health problem nowadays. The limited efficacy of conventional treatment
    strategies for bone regeneration has inspired the development of scaffold-based
    tissue engineering. In this study, we aimed to analyze the biocompatibility of
    human adipose stem cells (hASCs)-contained silk fibroin (SF) (SF-hASCs)
    scaffold for bone tissue engineering through in vitro and in vivo study. The SF
    scaffold was prepared through lyophilization method. To assess the suitability of
    SF scaffold as an implant for bone regeneration, microstructure and
    morphological characteristic of SF scaffold was examined by Fourier Transform
    Infrared Microscope (FTIR) and Scanning Electron Microscope (SEM). The
    results confirmed that the crystal structure of SF was not influenced during
    lyophilization process and the morphological of scaffold presented a good
    interconnectivity among the pores and an appropriate condition for the
    development of cells inside the scaffold. The in vitro study results assessed by
    MTT Assay and osteogenic differentiation by expression of extracellular matrix
    (ECM) mineralization proved that SF scaffold was non-toxic and provide suitable
    environment for hASCs to proliferated and differentiated into osteoblast. The in
    vivo study which was examined by rat calvarial defect model showed the greatest
    bone formation by SF-hASCs scaffold treatment, exhibited that this scaffold
    biocompatible for in vivo implantation. In line with histological results, calvarial
    defect treated with SF-hASCs scaffold exhibited the functionality of bone
    regeneration showed by more collagen and blood vessels formation. Summarily,
    our in vitro and in vivo study demonstrated that SF-hASCs scaffold can find
    potential applications in bone repair and regeneration.

    ABBREVIATION TABLE ...................................................................................... i ABSTRACT ............................................................................................................. iii ACKNOWLEDGEMENT ....................................................................................... iv CONTENTS ............................................................................................................. v FIGURE INDEX ................................................................................................. ..viii TABLE INDEX ....................................................................................................... xi CHAPTER 1 INTRODUCTION ...................................................................... 1 CHAPTER 2 LITERATURE REVIEW .......................................................... 5 2.1 Silk fibroin – structure and properties ............................................................... 5 2.2 Optimal scaffold for bone tissue engineering ................................................... 8 2.3 Silk fibroin as a scaffold for bone tissue engineering ....................................... 10 2.4 Adipose stem cells for bone tissue engineering ................................................ 13 2.5 Animal calvarial defect model .......................................................................... 15 2.5.1 Small-animal models ............................................................................ 15 2.5.2 Larger-animal models ........................................................................... 16 2.6 Bone fracture healing stages ............................................................................. 18 CHAPTER 3 MATERIALS AND METHODS .............................. ................. 21 3.1 Experimental design .......................................................................................... 21 3.2 Materials ............................................................................................................ 22 3.3 Methods ............................................................................................................. 23 3.3.1 Preparation of Silk Fibroin (SF) solution ............................................. 23 3.3.2 Preparation of SF scaffold .................................................................... 24 3.3.3 Characterization of SF scaffold ............................................................ 25 3.3.3.1 Fourier Transform Infra-red (FTIR) ...................................... 25 3.4.3.2 Scanning Electron Microscopy (SEM) ................................. 26 3.3.4 Culture Human Adipose Stem Cells (hASCs) ...................................... 26 3.3.5 Seed hASCs on SF scaffolds ................................................................ 26 3.3.6 Cell viability test ................................................................................... 27 3.3.7 Cryosection of scaffold ......................................................................... 27 3.3.8 Alizarin red staining ............................................................................. 27 3.3.9 Von Kossa staining ............................................................................... 27 3.3.10 Rat calvarial defect model ................................................................... 28 3.3.11 Cryosection of calvarial bone .............................................................. 29 3.3.12 Micro-Computed Tomography (Micro-CT) ........................................ 29 3.3.13 Hematoxylin and Eosin (H&E) staining .............................................. 29 3.3.14 Masson’s trichrome staining ................................................................ 29 CHAPTER 4 RESULTS AND DISCUSSION ............................................... . 31 4.1 Physical characteristic of silk fibroin scaffold .................................................. 31 4.1.1 Structure of silk fibroin scaffold assessed by Fourier Transform Infrared Spectroscopy (FTIR) ............................................................. 31 4.1.2 Morphology of SF scaffold assessed by Scanning Electron Microscopy (SEM) .............................................................................. 34 4.2 In vitro biocompatibility of silk fibroin scaffold combined with human adipose stem cells for bone regeneration ........................................................ 36 4.2.1 Survival potential of human adipose stem cells on silk fibroin scaffold assessed by MTT assay ........................................................... 36 4.2.2 Extracellular matrix mineralization observation of human adipose stem cells on silk fibroin scaffold under chemical staining .................. 38 4.2.2.1 Alizarin red staining ................................................................ 38 4.2.2.2 Von Kossa staining .................................................................. 41 4.3 In vivo study of silk fibroin scaffold combined with human adipose stem cells examined by rat calvarial defect model ................................................... 44 4.3.1 Bone regeneration on rat calvarial defect model assessed by Micro- CT ......................................................................................................... 44 4.3.2 Histological observation of the rat calvarial defect junction under chemical staining .................................................................................. 48 4.3.2.1 Hematoxylin and Eosin (H&E) staining .................................. 48 4.3.2.2 Masson’s trichrome staining .................................................... 53 CHAPTER 5 CONCLUSIONS .......................................................................... 59 REFERENCES ........................................................................................................ 60

    [1] Bilezikian JP, Raisz LG, & Rodan GA (Eds.). Principles of Bone Biology (2nd ed.). San Diego, (2002) CA: Academic Press.
    [2] Rauschecker JP and Shannon RV. Sending sound to the brain. Science, (2002) 295: 1025–1029.
    [3] Rose FR and Oreffo RO. Bone tissue engineering: hope vs hype. Biochem. Biophys. Res. Commun., (2002) 292: pp. 1-7.
    [4] Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, et al. Bone-graft substitutes: Facts, fictions, and applications. J. Bone Joint Surg. Am., (2001) 83-A (Suppl.2 Pt 2): 98–103.
    [5] Laurencin CT, Khan Y, & El-Amin SF. Bone graft substitutes. Exp. Rev. Med. Dev., (2006) 3: 49–57.
    [6] Paskert JP, Yaremchuk MJ, Randolph MA and Weiland AJ. The role of cyclosporin in prolonging survival in vascularized bone allografts. Plast. Reconstr. Surg., (1987) 80: 240–247.
    [7] Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J. Mater. Chem. B., (2014) 2: 7272.
    [8] Damien CJ & Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater., (1991) 2: 187–208.
    [9] Coombes AG & Meikle MC. Resorbable synthetic polymers as replacements for bone graft. Clin. Mater., (1994) 17: 35–67.
    [10] Oikarinen J & Korhonen LK. The bone inductive capacity of various bone transplanting materials used for treatment of experimental bone defects. Clin. Orthop. Relat. Res., (1979) 140: 208–215.
    [11] Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting. Clin. Orthop. Relat. Res., (1999) 367: S107–117.
    [12] Van Gaalen SM, et al. Bone tissue engineering for spine fusion: an experimental study on ectopic and orthotopic implants in rats. Tissue Eng., (2004) 10: 231–239.
    [13] Bianco P & Robey PG. Stem cells in tissue engineering. Nature, (2001) 414: 118–121.
    [14] Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials, (2000) 21: 2347–2359.
    [15] Li ZH, Ji SC, Wang YZ, Shen XC, Liang H. Silk fibroin-based scaffolds for tissue engineering. Front. Mater. Sci., (2013) 7: 237.
    [16] Horan RL, Antle K, Collette AL, Wang YZ, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH. In vitro degradation of silk fibroin. Biomaterials, (2005) 26: 3385–3393.
    [17] Murphy AR, John PS, Kaplan DL. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials, (2008) 29: 2829–2838.
    [18] Meinel L, Hofmann S, Karageorgiou V, Head CK, McCool J, Gronowicz G, Zichner L, Langer R, Novakovic GV, Kaplan DL. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, (2005) 26: 147–155.
    [19] Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res., (1999) 46: 382–389.
    [20] Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins-Structure Funct. Genet., (2001) 44: 119–122.
    [21] Nogueira GM, Rodas ACD, Leite CAP, et al. Preparation and Characterization of Ethanol-Treated Silk Fibroin Dense Membranes for Biomaterials Application using Waste Silk Fibers as Raw Material. [J]. Bioresour. Technol., (2010) 101: 8 446-8 451.
    [22] Freddi G, Pessina G, Tsukada M. Swelling and Dissolution of Silk Fibroin (Bombyx mori) in N-methyl Morpholine N-oxide. [J]. Int. J. Biol. Macromol., (1999) 24: 251-263.
    [23] Rujiravanit R, Kruaykitanon S, Jamieson AM, Tokura S. Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromol. Biosci., (2003) 3: 604–611.
    [24] Thapa A, Webster J, Haberstroh KM. Polymers with nano-dimensioned surface features enhance bladders smooth muscle cell adhesion. J. Biomed. Mater. Res., (2003) 67A: 1374–1383.
    [25] Yoshimoto H, Shin YM, Terai HV. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, (2003) 24: 2077–2082.
    [26] Khor HL, Ng KW, Schantz JT, Phan TT, Lim TC, Teoh SH, Hutmacher DW. Poly(ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Mater. Sci. Eng. C., (2002) 20: 71.
    [27] Mesimaki K, Lindroos B, Tornwall J. Novel maxillary reconstruction with etopic bone formation by GMP adipose stem cells. Int. J. Oral Maxillofac. Surg., (2009) 38: pp. 201-209.
    [28] Omenetto FG, Kaplan DL. New Opportunities for an Ancient Material. Science, (2010) 329: 528–531.
    [29] Lewis R. Unraveling the weave of spider silk. Bioscience, (1996) 46: 636–638.
    [30] Jin HJ, & Kaplan DL. Mechanism of silk processing in insects and spiders. Nature, (2003) 424: 1057–1061.
    [31] Mandal BB, & Kundu SC. Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications. Macromol. Biosci., (2008) 8: 807–818.
    [32] Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes. PLoS One, (2007) 2: e514.
    [33] Pérez-Rigueiro J, Elices M, Llorca J, Viney C. Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web. J. Appl. Polym. Sci., (2001) 82: pp. 2245-2251.
    [34] Fraser RBD and MacRae TP. Conformation of Fibrous Proteins and Related Synthetic Polypeptides. Chapter 13. Silks. New York, (1973): Academic Press.
    [35] Kratky O, Schauenstein E, Sekora A. An unstable lattice in silk fibroin. Nature, (1950) 165(4191): 319–320.
    [36] Ambrose EJ, Bamford CH, Elliott A, et al. Water soluble silk: an α-protein. Nature, (1951) 167(4242): 264–265.
    [37] Carlisle CH, Bernal JD. Crystallography. Annu. Rep. Prog. Chem., (1955) 52: 380–403.
    [38] Kratky O. Zur molekularen morphologie des seidenfibroins. Monatsh. Chem., (1956) 87(2): 269– 280.
    [39] Warwicker JO. Comparative studies of fibroins. II. The crystal structures of various fibroins. J. Mol. Biol., (1960) 2(6): 350–362.
    [40] Valluzzi R, Gido SP, Zhang W, et al. Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air–water interface. Macromolecules, (1996) 29(27): 8606–8614.
    [41] Sohn S, Strey HH, Gido SP. Phase behavior and hydration of silk fibroin. Biomacromolecules, (2004) 5(3): 751–757.
    [42] Lu Q, Feng Q, Hu K, et al. Preparation of three-dimensional fibroin/collagen scaffolds in various pH conditions. J. Mater. Sci. Mater. Med., (2008) 19(2): 629–634.
    [43] Zhou P, Xie X, Knight D P, et al. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. Biochemistry, (2004) 43(35): 11302–11311.
    [44] Nam J, Park YH. Morphology of Regenerated Silk Fibroin: Effects of Freezing Temperature; Alcohol Addition, and Molecular Weight. J. Appl. Polym. Sci., (2001) 81(12): 3008-3021.
    [45] Servoli E, Maniglio D, Motta A, Predazzer R, Migliaresi C. Surface properties of silk fibroin films and their interaction with fibroblasts. Macromol. Biosci., (2005) 5(12): 1175-1183.
    [46] Chen C, Chuanbao C, Xilan M, Yin T, Hesun Z. Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method. Polymer, (2006) 47(18): 6322-6327.
    [47] Gil ES, Frankowski DJ, Hudson SM, Spontak RJ. Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition. Mater. Sci. Eng., (2007) 27(3): 426-431.
    [48] Motta A, Fambri L, Migliaresi C. Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol. Chem. Phys., (2002) 203(10-11): 1658-1665.
    [49] Li M, Lu S, Wu Z, Tan K, Minoura N, Kuga S. Structure and properties of silk fibroin–poly(vinyl alcohol) gel. Int. J. Biol. Macromol., (2002) 30: 89–94.
    [50] Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials, (2003) 24: 401–416.
    [51] Hofmann S, Wong CT, Foo P, Rossett F, Textor M, Vunjak-Novakovic G, et al. Silk fibroin as an organic polymer for controlled drug delivery. J. Controlled Release, (2006) 111: 219–227.
    [52] Bhardwaj N, & Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., (2010) 28: 325–347.
    [53] Mandal BB, & Kundu SC. Biospinning by silkworms: Silk fiber matrices for tissue engineering applications. Acta Biomater., (2010) 6: 360–371.
    [54] Liu H, Xu W, Zou H, Ke G, Li W, Ouyang C. Feasibility of wet spinning of silk-inspired polyurethane elastic biofiber. Mater. Lett., (2008) 62: 1949–1952.
    [55] Dandu R, Cresce AV, Briber R, Dowell P, Cappello J, Ghandehari H. Silk–elastin like protein polymer hydrogels: Influence of monomer sequence on physicochemical properties. Polymer, (2009) 50: 366–374.
    [56] Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol. Bioeng., (2004) 88: 379–391.
    [57] Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of fibroblast cells on silk fibroin. Biochem. Biophys. Res. Commun., (1995) 208: 511.
    [58] Vepari C & Kaplan DL. Silk as a biomaterial. Prog. Poly. Sci., (2007) 32: 991–1007.
    [59] Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials, (2008) 29(24–25): 3415–28.
    [60] Kim UJ, Park J, Kim HJ, Wad M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, (2005) 26: pp. 2775–2785.
    [61] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys., (1998) 20: 92–102.
    [62] Karageorgiou V and Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, (2005) 26: pp. 5474-5491.
    [63] Albrektsson T and Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J., (2001) 10: S96–S101.
    [64] Okii N, Nishimura S, Kurisu K, Takeshima Y, Uozumi T. In vivo histological changes occurring in hydroxyapatite cranial reconstruction—case report. Neur. Med-Chir., (2001) 41 (2): pp. 100–104.
    [65] Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci., (2001) 46: pp. 273–282.
    [66] Hench LL, Polak JM. Third generation biomaterials. Science, (2002) 295 (5557): p. 1014.
    [67] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, (2006) 27: 3413–3431.
    [68] Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TCJ. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Tissue Eng. Regener. Med., (2007) 1: 245–260.
    [69] Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv., (2002) 20(2): 91–100.
    [70] Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, (2004) 5(3): 718–26.
    [71] Doblar´e M, Garc´ıa JM, G´omez MJ. Modeling bone tissue fracture and healing: a review. Eng. Fract. Mech., (2004) 71: 1809–1840.
    [72] Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL, Stem cell-based tissue engineering with silk biomaterials. Biomaterials, (2006) 27: 6064–6082.
    [73] Kim HJ, Kim UJ, Leisk GG, Bayan C, Georgakoudi I, Kaplan DL. Bone Regeneration on Macroporous Aqueous‐Derived Silk 3‐D Scaffolds. Macromol. Biosci., (2007) 7: 643–655.
    [74] Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. Engineering bone‐like tissue in vitro using human bone marrow stem cells and silk scaffolds. J. Biomed. Mater. Res., Part A, (2004) 71: 25–34.
    [75] Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials, (2005) 26: 4442–4452.
    [76] Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan DL. Silk implants for the healing of critical size bone defects. Bone, (2005) 37: 688–698.
    [77] Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C. Silk based biomaterials to heal critical sized femur defects. Bone, (2006) 39: 922–931.
    [78] Jung SR, Song NJ, Yang DK, Cho YJ, Kim BJ, Hong JW, et al. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutr. Res., (2013) 33: 162e170.
    [79] Sarah Sundelacruz and David Kaplan. Stem cell and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell. Dev. Biol., (2009) 20: pp. 646-655.
    [80] Gomes ME and Reis RL. Tissue engineering: key elements and some trends. Macromol. Biosci., (2004) 4: 737.
    [81] Tögel F and Westenfelder C. Adult bone marrow-derived stem cells for organ regeneration and repair. Dev. Dyn., (2007) 236: pp. 3321-3331.
    [82] Nishida S, Endo N, and Yamagiwa H. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J. Bone. Miner. Metab., (1999) 17: pp. 171-177.
    [83] Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz, HP, Hedrick MH. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng, (2001) 7: 211.
    [84] Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem, (2004) 14: 311.
    [85] Gronthos S. Surface protein characterization of human adipose tissue-derived stromal cells. Cell. Physiol, (2001) 189: pp. 54-63.
    [86] Gimble JM, Katz AJ, and Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ. Res., (2007) 100: pp. 1249-1260.
    [87] Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal criticalsize mouse calvarial defects. Nat. Biotechnol., (2004) 22: 560.
    [88] Hattori H, Masuoka K, Sato M, Ishihara M, Asazuma T, Takase B, Kikuchi M, Nemoto K, Ishihara M. Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J. Biomed. Mater. Res. B. Appl. Biomater., (2006) 76: 230.
    [89] Szpalski C, Barr J, Wetterau M, Saadeh PB, and Warren SM. Cranial bone defects: current and future strategies. Neurosurg. Focus, (2010) 29: E8.
    [90] Aalami OO, Nacamuli RP, Lenton KA, Cowan CM, Fang TD, and Fong KD. Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast. Reconstr. Surg., (2004) 114: pp. 713-720.
    [91] Schimtz JP, Schwartz Z, Hollinger JO, and Boyan BD. Characterization of rat calvarial nonunion defects. Acta Anat. (Basel), (1990) 138: pp. 185-192.
    [92] Shapiro. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell. Mater., (2008) 15: 53-76.
    [93] Mundi R, Petis S, Kaloty R, Shetty V, Bhandari M. Low-intensity pulsed Ultrasound: Fracture healing, Ind. Journ. Orthopaed., (2009) 43(2): 132-140.
    [94] Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Progr. Biophy. Mole. Biol., (2008) 93: 384-98.
    [95] Tortora GJ, Grabowski SR. Principles of anatomy and physiology. 10th ed. Hoboken (NJ), (2003): John Wiley and Sons, Inc.
    [96] Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: The potential for engineering bone. Eur. Cells. Mater., (2008) 15: 100–14.
    [97] Einhorn ΤA. The cell and molecular biology of fracture healing. Clin. Orthop. Rel. Res., (1998) 355S: S7-S21.
    [98] Frost HM. The biology of fracture healing, part II. Clin. Orthop. Rel. Res., (1989) 248: 294-309.
    [99] Caplan AI. The mesengenic process: bone repair and regeneration. Clin. Plast. Surg., (1994) 21 (3): 429-435.
    [100] Bailon-Plaza A, Van der Meulen MC. A mathematical framework to study the effects of growth factor influences on fracture healing. J. Theor. Biol., (2001) 212: 191-209.
    [101] Hino T, Tanimoto M, Shimabayashi S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J. Colloid Interface Sci., (2003) 266: 68–73.
    [102] Haris PI, Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B: Enzym., (1999) 7: 207–221.
    [103] Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials, (1998) 19: 357–369.
    [104] Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry, (1990) 29: 3303–3308.
    [105] Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, (1986) 25: 469–487.
    [106] Hu X, Kaplan D, Cebe P. Dynamic protein−water relationships during−Sheet formation. Macromolecules, (2008) 41: 3939–3948.
    [107] Hu X, Kaplan D, Cebe P. Determining beta-Sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, (2006) 39: 6161–6170.
    [108] Mostafaei A, Zolriasatein A. Synthesis and characterization of conducting poly-aniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci. Mater. Int., (2012) 22: 273-280.
    [109] Spicer PP, et al. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Protoc., (2012) 7: 1918–1929.
    [110] Annibali S, et al. Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial “critical size” defect: Preliminary data. J. Biomed. Mater. Res., (2014) 102: 815–825.
    [111] Fischer AH, Jacobson KA, Rose J, Zeller R. Preparation of Cells and Tissues for Fluorescence Microscopy, Chapter 4, in Basic Methods in Microscopy (eds. Spector and Goldman). NY, USA, (2006): Cold Spring Harbor Laboratory Press.

    QR CODE