簡易檢索 / 詳目顯示

研究生: 游漢能
Yusuf - Priyambodo
論文名稱: 傳統商用排油煙櫃的流場與洩漏特性
Flow and Leakage Characteristics of Conventional Kitchen Hoods
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳佳堃
Jia-Kun Chen
許清閔
Ching Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 155
中文關鍵詞: 排油煙櫃流場可視化追蹤氣體濃度測試
外文關鍵詞: range hood, flow visualization, gas concentration measurement
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對傳統的商用箱型廚房排油煙櫃,利用實驗方法探討排油煙櫃的流場特徵與洩漏特性。本研究的傳統的商用箱型廚房排油煙櫃包含三種設計的型式(平板式、槽板式及無平板式)。使用流場可視化的方法,擷取傳統商用排油煙機之水平面及垂直面上的特徵流場照片。使用六氟化硫作為追蹤氣體,藉由偵測六氟化硫的濃度分佈,探討排油煙櫃的洩漏特性。由流場可視化的結果發現,一個迴流泡在排油煙機的左上方形成因為邊界層分離。此迴流泡結構造成排油煙機運轉在大的面速度時,內部的油煙捲出排油煙機的外部。排油煙機內強烈的紊亂氣流,使得內部流體排油煙櫃的兩測及上緣流出,造成濃度洩漏呈現倒U型的分佈。當放置人體模型在排油煙機前方時,將引致強烈的紊亂流動,因此使得排油煙櫃內部的六氟化硫氣體大量地洩漏至排油煙櫃以外的環境中。在高吸氣面速度條件下,物體經過排油煙櫃前方時沒有造成強烈的濃度洩漏。整體而言,傳統的商用箱型廚房排油煙櫃的抽氣性能不佳,需要根據氣動力學的概念作適當的修改。


    The flow and leakage characteristics of a conventional commercial box-type kitchen hood were experimentally studied. The conventional commercial box-type kitchen hood included three design configurations (with plate, with slotted plate, and without plate). The characteristic flow patterns in the horizontal and vertical planes of the conventional commercial box-type kitchen hood were captured by flow visualization method. The leakage characteristics of conventional commercial box-type kitchen hood were recorded by SF6 tracer-gas concentration detection technique. A recirculation bubble was formed at the upper left side of the hood due to the boundary layer separation. This recirculation bubble caused the smoke disperse out of the hood when the face velocity of the hood was high. The high leakage concentration was detected around the area of inverted U in the hood face. Placing a mannequin in front of the hood face would induce large turbulent flows, and cause a significant leakage concentration into the environment through the left edge of the hood. The moving object passed through the hood face doesn’t have significant effect for the leakage concentration at high face velocities. Overall, the conventional commercial box-type kitchen hood showed low performance that improvement in aerodynamic design is required.

    Abstract ………………………………………………………………………………… i 中文摘要……………………………………………………………………………….. ii Acknowledgements……………………………………………………………………... iii Table of Contents……………………………………………………………………….. iv Nomenclature…………………………………………………………………………… vi Table Caption…………………………………………………………………………… vii Figure Caption…………………………………………………………………………... viii Chapter I Introduction…………………………………………………………………. 1 1.1 Motivation ……………………………………………………………………... 1 1.2 Literature Review………………………………………………………………. 3 1.3 Objective……………………………………………………………………….. 6 Chapter II Experimental Methods and Equipments……………………………………. 8 2.1 Experimental Equipments………………………………………………………. 8 2.1.1 Conventional Commercial Bo-Type Kitchen Hood…………………….. 8 2.1.2 Blower…………………………………………………………………… 8 2.1.3 Smoke Generator…………………………………………………………. 9 2.1.4 Sulfur hexafluoride (SF6) Ejector……………………………………… 9 2.1.5 Sulfur hexafluoride (SF6) Sampling Probe……..………………………. 9 2.1.6 Laser-light Sheet Generator…………………………………………….. 10 2.1.7 Digital Camcorder………………………………………………………. 10 2.1.8 Moving Mechanism……………………………………………………... 10 2.1.9 Electric Heating Plate……………………………………………………. 11 2.1.10 Oil Pot………………………………………………………………….. 11 2.2 Measuring Instruments………………………………………………………….. 11 2.2.1 Ventury Flow Meter…………………………………………………… 11 2.2.2 Monometer…………………………………………………………….. 12 2.2.3 Hot Wire Anemometer………………………………………………… 12 2.2.4 Rotameter………………………………………………………………. 12 2.2.5 MIRRAN Sapphire Gas Detector……………………………………… 13 2.3 Experimental Methods………………………………………………………….. 14 Chapter III Flow Visualization Characteristics…………………………………………. 16 3.1 Static Flow Visualization ………………………………………………………. 16 3.1.1 Static Flow Visualization without Mannequin……………………….. 16 3.1.2 Static Flow Visualization with Mannequin…………………………… 21 3.2 Dynamic Flow Visualization …………………………………………………… 22 3.2.1 Dynamic Flow Visualization with mannequin……………………………….. 22 Chapter IV Leakage Concentration Measurement……………………………………… 24 4.1 Static Leakage Concentration Measurement…………………………………… 24 4.1.1 Local Leakage Concentration Measurement………………………….. 24 4.1.2 Local Leakage Concentration Measurement with Mannequin………... 27 4.1.3 Breathing Zone Leakage Concentration Measurement……………….. 28 4.2 Dynamic Breathing Zone Leakage Concentration Measurement……………… 28 4.3 Robustness Test…………………………………………………………………. 29 4.3.1 Robustness Test without Mannequin………………………………….. 30 4.3.2 Robustness Test with Mannequin……………………………………… 31 Chapter V Conclusions………………………………………………………………….. 32 References………………………………………………………………………………. 34

    [1] Tung YH, Ko JL, Liang YF et al. “Cooking oil fume-induced cytokine expression and oxidative stress in human lung epithelial cells”, Environ Res; 87: 47–54. (2001)
    [2] Ying-Chin Ko, Li Shu-Chuan Cheng at al. “Chinese Food Cooking and Lung Cancer in Women Nonsmokers. American Journal of Epidemiology”, Vol.151, No. 2. (2000)
    [3] Rong Fung Huang, You-Cyun Nian, and Jia-Kun Chen. “Static Condition Differences in Conventional and Inclined Air-Curtain Range Hood Flow and Spillage Characteristics”, Environmental Engineering Science: Vol. 27, No. 6. (2010)
    [4] Flynn, M.R., and Ellenbecker, M. “Empirical validation of theoretical velocity fields into flanged circular hoods”. Am. Ind. Assoc. J. 48, 380. (1987)
    [5] Jia-Kun Chen, Rong Fung Huang, and Guan-Zhong Dai. “Flow Characteristics and Spillage Mechanisms of Wall-Mounted and Jet-Isolated Range Hoods”, Journal of Occupational and Environmental Hygiene, 7: 651–661. (2010)
    [6] Rong Fung Huang, Guan-Zhong Dai and Jia-Kun Chen. “Effects of Mannequin and Walk-by Motion on Flow and Spillage Characteristics of Wall-Mounted and Jet-Isolated Range Hoods”, Ann. Occup. Hyg. Vol. 54, No. 6, pp. 625–639. (2010)
    [7] Rong Fung Huang, You-Cyun Nian, Jia-Kun Chen and Kuan-Lin Peng. “Improving Flow and Spillage Characteristics of Range Hoods by Using an Inclined Air-Curtain Technique”, Ann. Occup. Hyg., Vol. 55, No. 2, pp. 164–179, (2011)
    [8] Dalla Valle, J. M.: Exhaust Hoods. New York: Industrial Press, 1945.
    [9] Silverman L.: Centerline velocity characteristics of round openings under suction. J. Ind. Hyg. Toxicol. 24:259–266 (1942).
    [10] Huang, R.F., and S.Y. Sir. “Capture envelopes of rectangular hoods in cross drafts”. AIHAJ 62:563–572 (2001).
    [11] Li, Y., A. Delsante, and J. Symons. “Residential kitchen hoods—Buoyancy-capture principle and capture efficiency revisited”, Indoor Air 7:151–157 (1997).
    [12] Furio Cascetta. “Experimental Evaluation of the Velocity Fields for Local Exhaust Hoods with Circular and Rectangular Openings”. Buildmg and Environment, Vol. 31, No. 5, pp. 437-449
    [13] OSHA (Federal Occupational Safety and Health Administration) Appendix A 4 g.
    [14] Cal/OSHA (California Occupational Safety and Health Administration) California Title 8, 5154.1
    [15] Knutson, G. Fume Hood 2000, Laboratory Hood Testing and Evaluation. Presentation given at the Fume Hoods 2000 Seminar. April 21, (1999)
    [16] Industrial Ventilation: A Manual of Recommended Practice. 25th edition.
    [17] Maupins, Karen. Hitchings, Dale T. "Reducing Employee Exposure Potential Using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a Diagnostic
    [18] Smith,T. (Exposure Control Technologies, Inc.). "Use of Average Face Velocity as an Indicator of Laboratory Hood Performance." 1999 American Industrial Hygiene Conference and Expo Abstracts #174. Last Updated on June 23, (1999)
    [19] NEWMAN B, G. “The deflection of plane jets by adjacent boundaries - Coanda effect.Boundary Layer and Flow Control”. Pergamon (1961)
    [20] Tritton, D.J. Physical Fluid Dynamics, 2nd edition. Oxford: Oxford University Press. (1988)

    無法下載圖示 全文公開日期 2018/06/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE