簡易檢索 / 詳目顯示

研究生: 陳堯鈞
Yao-Chun Chen
論文名稱: 剪切增稠流體多層軟性鎧甲製程與性質研究
Preparation and Properties of multi-layer Kevlar / Shear Thickening Fluid Composites
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 吳昌謀
Chang-Mou Wu
朱建嘉
Chien-Chia Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 剪切增稠流體彈道測試防護材料奈米矽顆粒
外文關鍵詞: Shear thickening fluids, Silicon dioxide nanoparticles, Ballistic test, Protective material
相關次數: 點閱:222下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分為兩部分,第一部分為本實驗延續過去實驗成果使用製程放大的40 wt%剪切增稠流體浸漬於Kevlar 纖維中製備複合材料試片進行彈道測試。並以製程放大40 wt%剪切增稠流體經滾軋機製備成STF/Kevlar 複合材料,進行彈道測試(空氣槍)、落重刀插測試。由研究結果顯示放大製程流體浸漬於四層Kevlar K29 能達到和原製程一樣的防彈效果,加入STF 對子彈的能量吸收效果約提升11%;而兩層Kevlar K129 浸漬STF 效果更明顯,子彈能量消散提升約31%。以放大製程40 wt%剪切增稠流體和滾軋機所製成之4 層STF/Kevlar 複合材料經彈道測試(空氣槍)、抗刀插測試結果顯示彈道測試能達到與浸漬製程的防彈效果;抗刀插測試結果比浸漬製程來的更好。
第二部分為以製程放大40 wt%剪切增稠流體經滾軋製程製備20 層的STF/Kevlar 複合材料並製備成軟性鎧甲和30 層Kevlar 比較,進行彈道測試(實彈)、落塔刀插測試、撓曲度及厚度量測。結果顯示20 層的STF/Kevlar 複材和30層Kevlar 為同為NIJ 0101.04-II 防護等級,但20 層的STF/Kevlar 複材的厚度僅30 層Kevlar 的70%,20 層的樣品撓曲程度也較佳。落塔測試結果顯示以NIJ 0115.00 之S1 刀具衝擊靶材,20 層的STF/Kevlar 複材之抗刀插能力略優於30 層Kevlar。防彈性能的結果顯示兩者的防彈性能也相似,因此添加STF 可以讓複合材料變得更輕,更有可撓性,但不改變其防護性能。


This study reports a “scale up process” of shear thickening fluid (STF). The 40 wt% STF / Kevlar composite was manufactured by two different process. One is impregnating Kevlar fabrics with STF. The other method uses “mangle machine” padding the STF into Kevlar fabrics. The air gun impact test result of the impregnating method showed that STF impregnating with 2 layers Kevlar K129 can significantly increase EDP by 31%. The air gun impact test results of the “mangle machine” method prepared composite is similar with the sample prepared by the impregnating method. However, stab test results showed that sample prepared by the mangle method showed a better resistance than the sample prepared by the impregnating method.
The ballistic impact, drop tower, and flexibility tests were conducted. To determine the performance of 30 layers Kevlar without coating STF and the 20 layers STF/Kevlar coated with STF and made by the “mangle machine” method. The result of ballistic impact tests showed both 20 layers STF/Kevlar and 30 layers Kevlar were of the same protection level. They both meet the requirement of NIJ 0101.04-II protection standard. The thickness of 20 layers STF/Kevlar composites were 70% of 30 layers Kevlar. The flexibility tests showed that 20 layers STF/Kevlar composites possesses better flexibility than 30 layers Kevlar. The drop tower test indicated that the 20 layers STF/Kevlar showed similar protective effect as 30 layers Kevlar. The ballistic impact test also showed similar results. Adding STF made the composites lighter and more flexible than conventional Kevlar.

論文提要內容 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 第二章 相關理論與文獻回顧 3 2.1 剪切增稠流體(Shear thickening fluids, STF) 3 2.1.1 剪切增稠流體介紹 3 2.1.2 剪切增稠流體理論 4 2.1.3 影響剪切增稠流體的因素 7 2.2 高性能纖維(High performance fiber) 12 2.2.1 高性能纖維簡介 12 2.2.2 Kevlar 纖維 14 2.2.3 其他防彈纖維 17 2.3 剪切增稠流體/纖維布複合材料 19 2.3.1 剪切增稠流體/高性能纖維應用 19 2.3.2 影響剪切增稠流體/纖維複合材料性能的因素 21 2.4 Fumed silica 簡介 25 2.5 複合材料測試原理與文獻回顧 27 2.5.1 彈道測試 27 2.5.2 落塔測試 (抗穿刺測試) 32 第三章 實驗方法 38 3.1 實驗藥品 38 3.2 實驗儀器 43 3.3 原製程剪切增稠流體 47 3.3.1 原製程剪切增稠流體實驗流程圖 47 3.3.2 原製程剪切增稠流體製備 47 3.3.3 剪切增稠流體/Kevlar 複材製備(浸漬式) 48 3.4 製程放大剪切增稠流體 49 3.4.1 製程放大剪切增稠流體實驗流程圖 49 3.4.2 製程放大實驗步驟 49 3.4.3 製程放大流體/Kevlar 複材製備 50 3.5 軟性鎧甲組件開發及評估 52 3.5.1 軟性鎧甲組件複合材料製備 52 3.5.2 軟性鎧甲組件開發 53 3.6 測試方式 54 3.6.1 熱重分析儀 54 3.6.2 流變測試 54 3.6.3 彈道測試 55 3.6.4 落塔測試 62 3.6.5 撓曲度和厚度測量 63 第四章 結果與討論 64 4.1 熱重分析 64 4.2 流變性質 66 4.3 彈道測試 67 4.3.1 彈道測試(空氣槍) 67 4.3.2 彈道測試(精度槍管) 70 4.4 落塔測試 74 4.4.1 刀插測試 (S1 刀具) 74 4.4.2 刀插測試 (P1 刀具) 77 4.5 撓曲度和厚度測量 79 第五章 結論 80 參考文獻 81 附錄A. 以fumed silica 製備剪切增稠流體 90 A.1 Fumed silica OX 50 熱重分析 90 A.2 Fumed silica STF 流變性質 91 A.3 比較整理15 nm 奈米二氧化矽顆粒和fumed silica 93

1. Lee, Y.S., Wetzel, E.D, and Wagner, N.J., The ballistic impact characteristics of
Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid, Journal
of Materials Science. 2003. 38(13): p. 2825-2833.
2. Decker, M.J., Halbach, C.J., Nam, C.H., Wagner, N.J., and Wetzel, E.D., Stab
resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and
Technology, 2007. 67(3-4): p. 565-578.
3. Barnes, H.A., Shear-thickening (“dilatancy”) in suspensions of nonaggregating
solid particles dispersed in Newtonian liquids, Journal of Rheology, 1989. 33(2):
p. 329-366.
4. Petel, O.E. and Higgins, A.J., Shock wave propagation in dense particle suspensions,
Journal of Applied Physics, 2010. 108(11): 114918.
5. Jiang, W., Gong, X., Xuan, S., Jiang, W., Ye, F., Li, X., and Liu, T., Stress pulse
attenuation in shear thickening fluid, Applied Physics Letters, 2013. 102(10):101901.
6. Jolly, M. and Bender, J., Field responsive shear thickening fluid. 2002, US20020171067 A1.
7. Zhang, X.Z., Li, W.H., and Gong, X.L., The rheology of shear thickening fluid
(STF) and the dynamic performance of and STF-filled damper, Smart Materials and Structures,
2008. 17(3): 035027.
8. Zhou, H., Yan, L., Jiang, W., Xuan, S., and Gong, X., Shear thickening fluid-based
energy-free damper: Design and dynamic characteristics, Journal of Intelligent Material
Systems and Structures, 2014. 27(2): p. 208-220.
9. Williams, T.H., Day, J., and Pickard, S., Surgical and medical garments and
materials incorporating shear thickening fluids, 2009, CA2662745 A1.
10. STF Technologies LLC. http://www.stf-technologies.com/.
11. Ozgen, O., Kallmann, M., and Brown, E., Simulating the dynamic behavior of
shear thickening fluids, arXiv preprint arXiv: 1510.09069, 2015.
12. Fall, A., Bertrand, F., Ovarlez, G., and Bonn, D., Shear thickening of cornstarch
suspensions, Journal of Rheology, 2012. 56(3): p. 575-591.
13. Hoffman, R.L., Discontinuous and dilatant viscosity behavior in concentrated
suspensions. I. observation of a flow instability, Journal of Rheology, 1972. 16(1):155-173.
14. Hoffman, R.L., Discontinuous and dilatant viscosity behavior in concentrated
suspensions. II. Theory and experimental tests, Journal of Colloid and Interface
Science, 1974. 46(3): p. 491-506.
15. Hoffman, R.L., Discontinuous and dilatant viscosity behavior in concentrated
suspensions III. Necessary conditions for their occurrence in viscometric flows,
Advances in Colloid and Interface Science, 1982. 17(1): p. 161-184.
16. Hoffman, R.L., Explanations for the cause of shear thickening in concentrated
colloidal suspensions, Journal of Rheology, 1998. 42(1): p. 111-123.
17. Brady, J.F. and Bossis, G., The rheology of concentrated suspensions of spheres in
simple shear flow by numerical simulation, Journal of Fluid Mechanics, 1985. 155:p. 105-129.
18. Brady, J.F. and Bossis, G., Stokesian dynamics, Annual Review of Fluid Mechanics, 1988. 20: p. 111-157.
19. Bender, J.W. and Wagner, N.J., Optical measurement of the contributions of
colloidal forces to the rheology of concentrated suspensions, Journal of Colloid
and Interface Science, 1995. 172(1): p. 171-184.
20. Bender, J. and Wagner, N.J., Reversible shear thickening in monodisperse and
bidisperse colloidal dispersions, Journal of Rheology, 1996. 40(5): p. 899-916.
21. Wagner, N.J. and Brady, J.F., Shear thickening in colloidal dispersions, Physics
Today, 2009. 62(10): p. 27-32.
22. Brown, E. and Jaeger, H.M., The role of dilation and confining stresses in shear
thickening of dense suspensions, Journal of Rheology, 2012. 56(4): p. 875-923.
23. Laun, H.M., Bung, R., Hess, S., Loose, W., Hess, O., Hahn, K., Hädicke, E.,
Hingmann, R., Schmidt, F., and Lindner, P., Rheological and small angle neutron
scattering investigation of shear ‐ induced particle structures of concentrated
polymer dispersions submitted to plane Poiseuille and Couette flow, Journal of
Rheology, 1992. 36(4): p. 743-787.
24. Eric, B. and Heinrich, M.J., Shear thickening in concentrated suspensions:
phenomenology, mechanisms and relations to jamming, Reports on Progress in Physics,
2014. 77(4): 046602.
25. 林志璋。剪切增稠流體複合材料耐衝擊性質之應用探討。碩士論文,國立台北科技大學:
化學工程與生物科技系,台北,2013。
26. Cates, M.E., Haw, M.D., and Holmes, C.B., Dilatancy, jamming, and the physics
of granulation, Journal of Physics: Condensed Matter, 2005. 17(24): p. 2517-2531.
27. O'Brie, V.T. and Mackay, M.E., Stress components and shear thickening of concentrated
hard sphere suspensions, Langmuir, 2000. 16(21): p. 7931-7938.
28. Holmes, C.B., Fuchs, M., and Cates, M.E., Jamming transitions in a schematic
model of suspension rheology, European Physical Society Letters, 2003. 63(2): p.240-246.
29. Lootens, D., Van Damme, H., and Hébraud, P., Giant Stress Fluctuations at the
Jamming Transition, Physical Review Letters, 2003. 90(17): 178301.
30. Lootens, D., van Damme, H., Hémar, Y., and Hébraud, P., Dilatant Flow of
Concentrated Suspensions of Rough Particles, Physical Review Letters, 2005. 95(26): 268302.
31. Fall, A., Huang, N., Bertrand, F., Ovarlez, G., and Bonn, D., Shear thickening of
cornstarch suspensions as a reentrant jamming transition, Physical Review Letters, 2008. 100(1): 018301.
32. Maranzano, B.J. and Wagner, N.J., The effects of particle-size on reversible
shear thickening of concentrated colloidal dispersions, Journal of Chemical Physics,
2001. 114(23): p. 10514-10527.
33. Lee, B.W., Kim, I.J., and Kim, C.G., The influence of the particle size of silica
on the ballistic performance of fabrics impregnated with silica colloidal suspension,
Journal of Composite Materials, 2009. 43(23): p. 2679-2698.
34. Wetzel, E.D., Lee, Y.S., Egres, R.G., Kirkwood, K.M., Kirkwood, J.E., and Wagner,
N.J., The effect of rheological parameters on the ballistic properties of shear thickening
fluid (STF)-Kevlar composites, AIP Conference Proceedings, 2004. 712(1): p. 288-293.
35. Kang, T.J., Kim, C.Y., and Hong, K.H., Rheological behavior of concentrated
silica suspension and its application to soft armor, Journal of Applied Polymer Science,
2012. 124(2): p. 1534-1541.
36. Liu, X.-Q., Bao, R.-Y., Wu, X.-J., Yang, W., Xie, B.-H., and Yang, M.-B.,
Temperature induced gelation transition of a fumed silica/PEG shear thickening
fluid, RSC Advances, 2015. 5(24): p. 18367-18374.
37. Houck, M.M., editor. Identification of Textile Fibers, 1st ed., Boca Raton, FL: CPC Press, 2009.
38. 吳人潔。複合材料。台北:新文京開發出版股份有限公司,2004。
39. DuPont, Kevlar technical information: properties and processing of DuPont
Kevlar brand yarn for mechanical rubber goods, technical information. 2008.
40. Yang, H.H., Kevlar Aramid Fiber, 1st ed., New York: John Wiley, 1993.
41. Ahmed, D., Hongpeng, Z., Haijuan, K., Jing, L., Yu, M., and Muhuo, Y.,Microstructural
developments of poly (p-phenylene terephthalamide) fibers during heat treatment process:
a review, Materials Research, 2014. 17(5): p. 1180-1200.
42. DuPont, Technical guide: Kevlar aramid fiber. 2000.
43. Dyneema properties. http://www.toyoboglobal.com/seihin/dn/dyneema/seihin/tokutyou.html.
44. Hearle, J. W., editor. High-performance fibres, 1st ed., Cambridge, UK: Woodhead Publish, 2001.
45. Egres Jr, R.G., Lee, Y.S., Kirkwood, J.E., Kirkwood, K.M., Wetzel, E.D., and
Wagner, N.J. Liquid armor: protective fabrics utilizing shear thickening fluids.
In Proceedings of the 4th International Conference of Safety and Protective Fabrics,
Pittsburg, PA, October, 26-27, 2004.
46. Tan, V.B.C., Tay, T.E., and Teo, W.K., Strengthening fabric armour with silica
colloidal suspensions, International Journal of Solids and Structures, 2005. 42(5-6): p. 1561-1576.
47. Hassan, T.A., Rangari, V.K., and Jeelani, S., Synthesis, processing and
characterization of shear thickening fluid (STF) impregnated fabric composites,
Materials Science and Engineering: A, 2010. 527(12): p. 2892-2899.
48. Hassan, T.A., Rangari, V.K., and Jeelani, S., Sonochemical synthesis and
rheological properties of shear thickening silica dispersions, Ultrasonics
Sonochemistry, 2010. 17(5): p. 947-952.
49. Kang, T.J., Hong, K.H., and Yoo, M.R., Preparation and properties of fumed
silica/Kevlar composite fabrics for application of stab resistant material, Fibers
and Polymers, 2010. 11(5): p. 719-724.
50. Mahfuz, H., Clements, F., Rangari, V., Dhanak, V., and Beamson, G., Enhanced
stab resistance of armor composites with functionalized silica nanoparticles,
Journal of Applied Physics, 2009. 105(6): 064307.
51. Park, Y., Kim, Y., Baluch, A.H., and Kim, C.G., Empirical study of the high
velocity impact energy absorption characteristics of shear thickening fluid (STF)
impregnated Kevlar fabric, International Journal of Impact Engineering, 2014. 72:p. 67-74.
52. Na, W., Ahn, H., Han, S., Harrison, P., Park, J.K., Jeong, E., and Yu, W.-R.,
Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear
rate, Composites Part B: Engineering, 2016. 97: p. 162-175.
53. Srivastava, A., Majumdar, A., and Butola, B.S., Improving the impact resistance
performance of Kevlar fabrics using silica based shear thickening fluid, Materials
Science and Engineering: A, 2011. 529: p. 224-229.
54. Majumdar, A., Butola, B.S., and Srivastava, A., Development of soft composite
materials with improved impact resistance using Kevlar fabric and nano-silica based
shear thickening fluid, Materials & Design, 2014. 54: p. 295-300.
55. Majumdar, A., Butola, B.S., and Srivastava, A., Optimal designing of soft body armour
materials using shear thickening fluid, Materials & Design, 2013. 46: p. 191-198.
56. Laha, A. and Majumdar, A., Interactive effects of p-aramid fabric structure and
shear thickening fluid on impact resistance performance of soft armor materials, Materials
& Design, 2016. 89: p. 286-293.
57. Park, J.L., Yoon, B.I., Paik, J.G., and Kang, T.J., Ballistic performance of p-aramid
fabrics impregnated with shear thickening fluid; Part I - Effect of laminating sequence,
Textile Research Journal, 2012. 82(6): p. 527-541.
58. Evonik, Basic characteristics of Aerosil® fumed silica, 2006.
59. Flörke, O.W., Graetsch, H.A., Brunk, F., Benda, L., Paschen, S., Bergna, H.E., Roberts,
W.O., Welsh, W.A., Libanati, C., Ettlinger, M., Kerner, D., Maier, M., Meon, W., Schmoll, R.,
Gies, H., and Schiffmann, D., Silica, Ullmann’s encyclopedia of industrial chemistry.
Wiley-VCH Verlag GmbH & Co., Weinheim, 2008.
60. Evonik, Technical overview Aerosil® fumed silica, 2015.
61. Ballistic Resistance of Police Body Armor, NILECJ–STD–0101.01. 1978,
Washington, D.C.: National Institute of Law Enforcement and Criminal Justice.
62. NIJ/NLECTC Approved Testing Laboratories. https://justnet.org/compliant/NIJapproved-labs.html.
63. JTIC Find Compliant Products. https://justnet.org/compliant/find products.html.
64. NIJ Standard-0101.06 "Ballistic Resistance of Body Armor". US Department of
Justice, Office of Justice Programs, National Institute of Justice, 2008.
65. NIJ Standard-0101.04 "Ballistic Resistance of Body Armor". US Department of
Justice, Office of Justice Programs, National Institute of Justice, 2001.
66. MIL-STD-662F, Military standard: V50 ballistic test for armor, 1997.
67. Pandya, K.S., Pothnis, J.R., Ravikumar, G., and Naik, N.K., Ballistic impact
behavior of hybrid composites, Materials & Design, 2013. 44: p. 128-135.
68. Bhatnagar, A., editor. Lightweight Ballistic Composites, 1st ed., Cambridge, UK: Woodhead Publishing, 2006.
69. Villanueva, G.R. and Cantwell, W., The high velocity impact response of composite
and FML-reinforced sandwich structures, Composites Science and Technology, 2004. 64(1): p. 35-54.
70. Reid, S. and Wen, H., editor. Impact Behaviour of Fibre-Reinforced Composite
Materials and Structures, 1st ed., Cambridge, UK: Woodhead Publishing, 2000.
71. Wen, H.M., Predicting the penetration and perforation of FRP laminates struck normally
by projectiles with different nose shapes, Composite Structures, 2000. 49(3): p. 321-329.
72. Kalman, D.P., Merrill, R.L., Wagner, N.J., and Wetzel, E.D., Effect of particlehardness
on the penetration behavior of fabrics intercalated with dry particles and concentrated
particle-fluid suspensions, ACS Applied Materials & Interfaces, 2009. 1(11): p. 2602-2612.
73. Park, J.L., Yoon, B.I., Paik, J.G., and Kang, T.J., Ballistic performance of p-aramid
fabrics impregnated with shear thickening fluid; Part II - Effect of fabric count and shot
location, Textile Research Journal, 2012. 82(6): p. 542-557.
74. Industrial Protective Clothing-For a Job Safely Done, DuPont.
http://www.dupont.com/products-and-services/personal-protectiveequipment/
chemical-protective-garments/uses-and-applications/industrial-safety.html.
75. Safety Gloves with Cut, Needle and Puncture Resistance - Turtleskin.
https://www.turtleskin.com/webstore/needle-resistant-safety-gloves.
76. Leslie, L.F., Woods, J.A., Thacker, J.G., Morgan, R.F., McGregor, W., and Edlich, R.F.,
Needle puncture resistance of surgical gloves, finger guards, and glove liners,
Journal of Biomedical Materials Research, 1996. 33(1): p. 41-46.
77. Verge, A.S., Rapidly deployable structures in collective protection systems. Report.
Acc. Number ADA444670 Army Soldier and Biological Chemical Command, Natick, MA 2006.
78. Henderson, J., Morgan, S., Patel, F., and Tiplady, M., Patterns of non-firearm homicide,
Journal of Clinical Forensic Medicine, 2005. 12(3): p. 128-132.
79. Dobash, R. E., Dobash, R. P., Cavanagh, K. and Lewis, R., Homicide in Britain: risk
factors, situational contexts and lethal interventions (focus on male offenders),
Research bulletin no.1. Department of Applied Society Science, DASS, University of Manchester, 2002.
80. NIJ/NLECTC, Taking the Stab Out of Stabbings, 2000.
81. NIJ Standard-0115.00, "Stab resistance of personal body armor". 2000.
82. Hosur, M., Mayo Jr, J.B., Wetzel, E., and Jeelani, S. Studies on the fabrication
and stab resistance characterization of novel thermoplastic-kevlar composites, Solid
State Phenomena. 2008. 136: p. 83-92.
83. DuPont, Kevlar® Correctional™: Puncture resistant technology on the cutting edge, 2003.
84. Zhao, J., Cao, H., Li, X., Wan, J., Wang, K., and Zhang, J., Effect of SiO2 particle
size on stab resistant properties of STF/Kevlar composites, Fuhe Cailiao Xuebao/Acta
Materiae Compositae Sinica, 2012. 29(1): p. 54-61.
85. Gong, X., Xu, Y., Zhu, W., Xuan, S., Jiang, W., and Jiang, W., Study of the knife
stab and puncture-resistant performance for shear thickening fluid enhanced fabric, Journal
of Composite Materials, 2013. 48(6): p. 641-657.
86. Chen, X. G., editor. Advanced Fibrous Composite Materials for Ballistic
Protection, 1st ed., Cambridge, UK: Woodhead Publishing, 2016.
87. Silicon Oxide (SiOx, 99.5%, 15 nm). http://www.nanoamor.com/inc/pdetail?v=1&pid=260.
88. 莊宏詣。剪切增稠流體製備及液態裝甲研究。碩士論文,國立台北科技大學:化學工程與生物
科技系,台北,2015。

QR CODE