簡易檢索 / 詳目顯示

研究生: 曾耀霆
Yao-Ting Tseng
論文名稱: 微生物誘導鈣/矽化合物之沉澱/膠結效應於動/靜態受剪行為之砂性土壤補強暨其聲-光學響應
Using Microbe Induced Calcium/Silica Compound Cementation/Precipitation to Reinforce the Dynamic/Static Shear Behavior of Sand and the Relevant Acousto-optic Response
指導教授: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
李冠群
Guan-Chiun Lee
口試委員: 陳堯中
Yao-Chung Chen
陳立憲
Li-Hsien Chen
李冠群
Guan-Chiun Lee
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 162
中文關鍵詞: 微生物巴氏芽孢桿菌矽藻碳酸鈣矽酸振動試驗直接剪力單軸抗壓超音波脈衝掃描式電子顯微鏡能量色散光譜儀
外文關鍵詞: Microorganis, Sporosarcina pasteurii, Cylindrical fusiformis, Calcium Chloride, Silicate, Vibration Test, Direct Shear Test, Uniaxial Compression Test, Ultrasonic Pulse, Scanning Electron Microscopy, Energy Dispersive Spectroscopy
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鑑於微生物由古演化自今有著無窮的潛能、形貌及種類千變萬化,在大自然中無處不有。在岩石、土壤方面,微生物為大自然成岩、礦化之重要因素之一。台灣國土危脆、坡陡流急,大地工程防災之需求日殷,目前地盤改良與邊坡防治等工程需求刻不容緩,本研究嘗試突破傳統地質改良之技術,如物理式地錨工程及化學式地盤灌漿工程等等之習見技術,改用存在於土壤中之微生物改良及固結土壤之技術,進行土木營建結合微生物之研探,藉由仿生工程技術之輔,以取之於自然,用之於自然,達到永續性、長效性之成效,更貼近於大自然之生態工程為本研究之宗旨。
卓雨璇(2011)於台灣本土土壤中,進行系列生理生化實驗研究出兩種具土壤改良之微生物,以此二菌進行砂土圓柱試體改良,藉由超音波脈衝(Ultrasonic Pulse, UP)量測其剪力波速之變化,72小時達到波速提升160%之改良成效。本研究以卓雨璇(2011)之試驗結果與改良方法做比對,以矽之物理性質優於鈣之特性,使用細胞壁成分為二氧化矽之微生物-矽藻(Cylindrical fusiformis),嘗試從矽藻中找出能使矽酸沉澱之機制,創新研究出可使微生物誘導矽酸進行膠結反應(MISC)之技術,並首次將矽藻結合土木營建對砂性土壤進行改良,同時找出合適的改良方式,對砂土改良前後作化性與物性之成效評估。
經由系列實驗獲致矽藻中具有催化二氧化矽膠結之蛋白,達到沉澱之機制,並與過去大量文獻所使用之巴氏芽孢桿菌(Sporosarcina pasteurii)與矽藻(Cylindrical fusiformis)同時進行微生物式砂土改良之實驗,控制砂土之相對密度(D_r),並且經由破壞性動態模擬地震之振動試驗、靜態直接剪力與單軸抗壓試驗,再結合非破壞聲學超音波脈衝分析,比較兩微生物改良鈣化與矽化砂土試體之強度成果及剪力波速變化的過程。
破壞性動靜態試驗結果,動態振動試驗模擬921單軸之地震參數,矽化及鈣化改良砂堆試體之坡角於振動前後皆維持不變。靜態抗壓試驗中,矽化砂試體抗壓強度最大為0.9 kgf/cm2;鈣化試體最大為3.4 kgf/cm2,說明微生物改良試體可使砂土擁有自立性。靜態直剪試驗中,於砂土D_r為60%,鈣化改良成果,剪力強度參數之凝聚力(c)提升了0.78 kgf/cm2;矽化改良成果,c提升了0.8 kgf/cm2,驗證了微生物誘導固化機制能使砂性土壤達到改良功效,
非破壞超音波脈衝分析結果,鈣化改良之剪力波速(V_s)提升了4.6倍;矽化改良之 V_s 提升了3.3倍,驗證了微生物使砂性土壤的固化過程,再搭配掃描式電子顯微鏡(Scanning electron microscopy, SEM)及能量色散光譜儀(Energy Dispersive Spectroscopy, EDS )觀測土壤顆粒間微生物之膠結情形。
本研究以矽藻作為結合土木營建之創新技術,未來可結合或取代巴氏芽孢桿菌之仿生技術,提供相關土讓改良工程之參佐,與矽膠結成岩機理之研析。


In view of the infinite potential, morphology and ever-changing variety of microorganisms that have evolved from ancient times to present times, they are omnipresent in nature. In terms of rock and soil, microorganisms are one of the important factors of natural diagenesis and mineralization. In Taiwan, the land is fragile, the slopes are steep and currents are rapid. The demand for land engineering disaster prevention is increasing. The current demand for site improvement and slope prevention and control is urgent. This research attempts to break through the traditional geological improvement technologies such as physical anchor engineering and chemical site grouting engineering, etc. Instead, the improvement of microorganisms in the soil and the consolidation of the soil are utilized so as to carry out the research of combining microorganisms and civil engineering construction. With the aid of bionic engineering technology, the purpose of this research is to take from nature and use it in nature to achieve sustainability and long-term effectiveness, which is closer to nature's ecological engineering.
Jhuo Yu-syuan (2011) conducted a series of physiological and biochemical experiments in the soil of Taiwan and found two kinds of soil improvement microorganisms. The two bacteria were used to improve the sand cylindrical specimen, and the changes in the shear wave velocity were measured by Ultrasonic Pulse (UP), and the improvement effect of the wave velocity increased by 160% in 72 hours. In this study, the test results of Jhuo Yu-syuan (2011) were compared with the improved method. The physical properties of silicon were better than those of calcium. The microbe-cylindrical fusiformis, which has the cell wall component of silicon dioxide, was used. The purpose was to find out the mechanism of silicic acid precipitation from cylindrical fusiformis to innovate the research of the technology that allows microorganisms to induce silicic acid cementation reaction (MISC). It was the first time to combine cylindrical fusiformis with civil engineering to improve sandy soil, and find appropriate improvement methods to evaluate the effectiveness of chemical and physical properties before and after sand improvement.
Through a series of experiments, the protein in cylindrical fusiformis that can catalyze the silica cementation is obtained to achieve the precipitation mechanism. Sporosarcina pasteurii used in a large number of literatures in the past and cylindrical fusiformis were utilized simultaneously to conduct microbial sand improvement experiments. After conducting destructive dynamic vibration, static compression and direct shear tests, and non-destructive ultrasonic pulse analysis, the results were used to compare the strength results and the change process of shear wave velocity.
Destructive dynamic and static test results showed the slope angle of the silicified and calcified modified sand pile specimens was maintained at about 35 degrees when dynamic vibration test simulated 921 uniaxial seismic parameters. In the static compression test, the maximum compressive strength of the silicified sand specimen was 0.54 kgf/cm2; the maximum compressive strength of the calcified specimen was 3.4 kgf/cm2, indicating that the microbial modified specimen can make the sand independent. In the static direct shear test, when the relative density (D_r) of sand is 60%, the result of calcification improvement yielded the cohesion (c) of the shear strength parameter increased by 0.78 kgf/cm2. The result of silicification improvement yielded that c increased by 0.8 kgf/cm2. It is verified that the microbial induced solidification mechanism can achieve the improvement effect of sandy soil,
The results of non-destructive ultrasonic pulse analysis showed that the shear wave velocity (V_s) of the calcification improvement was increased by 4.6 times, and the V_s of the silicification improvement was increased by 3.3 times that verified the cementation process of sandy soil by microorganisms. A scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to observe the cementation of microorganisms between soil particles.
This research used cylindrical fusiformis as an innovative technology to combine with civil engineering. In the future, it can be combined with or replace the bionic technology of sporosarcina pasteurii, providing reference for related soil improvement projects, and analysis of the diagenesis mechanism of silica cement.

摘要 I ABSTRACT III 誌謝 VII 目錄 IX 表目錄 XIII 圖目錄 XV 符號對照表 XXI 中英對照表 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究範圍與方法 2 1.4 研究架構與流程 3 第二章 文獻回顧 7 2.1 微生物於大地土岩之作用 7 2.1.1 微生物成岩成礦之本能 10 2.1.2 微生物-芽孢桿菌屬誘導碳酸鈣沉澱之生化機制 11 2.2 微生物-芽孢桿菌屬應用於大地工程之技術 16 2.2.1 微生物對砂土強度改良之影響 17 2.2.2 微生物應用於地盤改良及混凝土修復 19 2.3 微生物-矽藻細胞壁之二氧化矽沉澱機制 21 2.4 基本波傳原理 25 2.4.1 體波 25 2.4.2 應力波於介質內傳遞 26 2.5 超音波脈衝非破壞檢測技術 29 第三章 研究規劃與執行 31 3.1 微生物介紹與培養基選擇 31 3.1.1 巴氏芽孢桿菌(Sporosarcina pasteurii) 31 3.1.2 矽藻(Cylindrical fusiformis) 32 3.2 微生物-巴氏芽孢桿菌活性檢測 33 3.2.1 培養基調配 33 3.2.2 比色法-尿素酶活性檢測 (DMAB) 36 3.3 微生物-矽藻之生理生化實驗 41 3.3.1 矽藻培養及藻株蒐集 41 3.3.2 超音波震盪試驗 44 3.3.3 鹽析法(Salting-out) 45 3.3.4 布拉德福蛋白質定量法(Bradford assay) 45 3.3.5 矽酸鹽檢測-鉬矽酸鹽比色法 47 3.3.6 破藻液矽化膠結反應 52 3.4 微生物式砂土改良實驗 53 3.4.1 砂土物理性質 53 3.4.2 動態模擬地震之振動試驗 54 3.4.3 靜態直接剪力試驗 57 3.4.4 靜態土壤單軸抗壓試驗 60 3.4.5 超音波脈衝分析 62 3.5 掃描式電子顯微鏡與元素分析 67 第四章 試驗成果與分析 73 4.1 巴氏芽孢桿菌引致鈣化機制 74 4.1.1 尿素檢量線校正 76 4.1.2 桿菌尿素酶活性檢測(DMAB) 77 4.2 矽藻蛋白引致矽化膠結反應 80 4.2.1 Bradford assey檢量線校正 81 4.2.2 破藻液蛋白定量(Bradford assey) 83 4.2.3 破藻液膠結反應 86 4.2.4 鉬矽酸鹽比色法檢量線校正 90 4.2.5 矽酸膠結之濃度檢測(鉬矽酸鹽比色法) 91 4.3 砂土試體改良之微觀造影及元素分析 97 4.3.1 微生物誘導碳酸鈣膠結(MICC) 98 4.3.2 微生物誘導二氧化矽膠結(MISC) 99 4.4 砂土改良實驗 101 4.4.1 動態模擬地震之振動試驗結果分析 101 4.4.2 靜態直接剪力試驗之強度檢測 103 4.4.3 靜態單軸抗壓試驗之強度檢測 108 4.4.4 砂土改良試體之剪力波速 109 第五章 結論與建議 113 5.1 結論 113 5.2 建議 115 參考文獻 119 附錄A、委員意見回應表 A-1 附錄B、環保署訂定之矽酸檢測法 B-1

[1] Arpajirakul S., Likitlersuang S., “Treatment conditionsused inmicrobial induced calcite precipitation for sandy soilimprovement,” 2019.(Oral presentation)
[2] Atlas, R. M. and Bartha, R., “Microbial ecology : Fundamentals and applications,” 1998.
[3] Bang, S. S., Galinat, K. J. and Ramkrishnan, V., “Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii,” 2001.
[4] Bachmeier, K. L., Williams, A. E., Warmington, J. R. and Bang, S. S., “Urease activity in microbiologically-induced calcite precipitation,” 2002.
[5] Benini, S., Gessa, C. and Ciurli, S., “Bacillus pasteurii urease : a heteropolymeric enzyme with a binuclear nickel active site,” 1996.
[6] Benini, S., Rypniewski, W. R., Wilson, K. S., Miletti, S., Ciurli, S. and Mangani, S., “A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii:why urea hydrolysis costs two nickels,” 1999.
[7] Bergey, D. H., Krieg, N. R. and Holt, J. G., “Bergey’ s Manual of systematic Bacteriology,” 1984.
[8] Carraro, J. A. H. and Bandini, P., “Liquefaction Resistance of Clean and Nonplastic Silty Sands Based on Cone Penetration Resistance,” 2003.
[9] Meehan, C. L. and Rashid, A. S. A., “Sustainable Improvement of Tropical Residual Soil Using an Environmentally Friendly Additive,” 2014.
[10] Ciurli, S. and Marzadori, C., “Urease from the soil bacterium Bacillus pasteurii : immobilization on Ca-polygalcturonate,” 1996.
[11] Cline, R. E., Fink, R. M., “Investigation of Color Reaction between p-Dimethylaminobenzaldehydeand Urea or Ureído Acids,” 2019.
[12] Cogley, J. G. and Aikman, M., “The insoluble residue test for abundance of carbonate,” 1997.
[13] DeJong, J. T., Fritzges, M. B. and Nusslein K., “Microbially induced cementation to control sand response to undrained shear,” 2006.
[14] Dupraz, C. and Reid, R. P., “Processes of carbonate precipitation in modern microbial mats,” 2009.
[15] Edwards, K. J., Bach, W. and McCollom, T. M., “Geomicrobiology in oceanography : microbe-mineral interactions at and below the seafloor,” 2005.
[16] El-Sekelly, W. and Abdoun, T., “Soil Characterization in Centrifuge Models through Measurement of hear Wave Velocities Using Bender Elements,” 2012.
[17] Elliott, S. E. and Wiley, B. F., “Compressional velocities of partially saturated, unconsolidated sands,” 1975.
[18] Fankhouser, D. B., “Gram stain protocol : Hucker’ s modification,” 2006.
[19] Fischer, S. S., Galinat, K. J. and Bang, S. S., “Microbiological precipitation of CaCO3,” 1999,.
[20] Follmer, C., “Insight into the role and structure of plant ureases,” 2008.
[21] Gan, L. M. and Zhang, K. “Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions,” 1995.
[22] Haeri, S. M. and Hamidi, A. H., “The effect of cement content on shear behavior of a cemented gravelly sand,” 2006.
[23] Ibrahim, M. A. and Al-Omari, R. R., “Effect of microbial carbonate precipitation in silty sandy soils,” 2012.
[24] Ismail, M. A., Joer, H. A., Sim, W. H. and Randolph, M. F., “Effect of Cement Type on Shear Behavior of Cemented Calcareous Soil,” 2002.
[25] Jawad, F. and Zheng, J. J. , “Improving Poorly Graded Fine Sand with Microbial Induced Calcite Precipitation,” 2016.
[26] Kröger, N. and Bergsdorf, C., “A new calcium binding glycoprotein family constitutes a major diatom cell wall component,” 1994.
[27] Kröger, N. and Deutzmann, R., “Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation,” 1999.
[28] Kröger, N. and Deutzmann, R., “Silica-precipitating Peptides from Diatoms,” 2001.
[29] Kröger, N. and Lehmann, G., “Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall,” 1997.
[30] Kröger, N. and Lorenz, S., “Self-Assembly of Highly Phosphorylated Silaffins and TheirFunction in Biosilica Morphogenesis,” 2019.
[31] Kroll, R. G., Alkalophiles. In: Edwards,C. (Ed.), Microbiology of Extreme Environments, 1990.
[32] Krost, M. T. and Neubert, R., “Analytical methods for measuring urea in pharmaceutical formulations,” 1996.
[33] Larson, A. D. and Kallio, R. E. “Purification and properties of bacterial urease,” 1953.
[34] Lechner, C. C. and Becker, C. F. W., “Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation,” 2015.
[35] Min S. H. and Kim H. Y., “Ureolytic/Non-Ureolytic Bacteria Co-Cultured Self-Healing Agent for Cementitious Materials Crack Repair,” 2018.
[36] Mitchell, J. K. and Santamarian, C. J., “Biological considerations in geotechnical engineering,” 2005.
[37] Natarajan, K. R., “Kinetic Study of the Enzyme Urease from Dolichos biflorus,” 2019.
[38] Nemati, M. and Voordouw, G., “Modification of porous media permeability, using calciumcarbonate produced enzymatically in situ,” 2003
[39] Paassen,L. A., Ghose, R. and Linden, T. J. M., “Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment,” 2010.
[40] Foo, C. W. P. and Huang, J., “Lessons from seashells: silica mineralization via protein templating,” 2004.
[41] Ramaley, R. F. and Hixson, J., “Isolation of a nonpigmented, thermophilic bacterium similar to Thermophilic bacterium similar to Thermus aquaticus,” 1970.
[42] Ruixing, W. and WangJie, L., “Study on soil solidification based on microbiological precipitation of CaCO3,” 2010.
[43] Shieh, G. J. and Chien, L. F., “The extrinsic proteins of an oxygen-evolving complex in marine diatom Cylindrotheca fusiformis,” 2011.
[44] Shields, F. D. and Sabatier, J. M., “The effect of moisture on compressional and shear wave speeds in unconsolidated ranular material,” 2000
[45] Tittelboom, K. V. and Muynck, W. D., “Bacteria protect and heal concrete and stone,” 2009.
[46] Van Slyke, D. D., Archibald, R. M., “Manometric titrimetric,and colorimetric method for measurement of urease activity,” 1944.
[47] Song, W. and Park, H., “Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage,” 2017.
[48] 廖元憶,台灣西南沿海高細粒料含量砂土的探討,國立成功大學土木工程學系,碩士論文,2005。
[49] 閻葆瑞,張錫根,微生物成礦學,北京,科學出版社,2000。
[50] 環保署,水中矽酸鹽檢測方法-鉬矽酸鹽比色法,檢字第 0920080856號公告。
[51] 卓雨璇,微生物式之碳酸鈣膠結效應對粒狀土壤地質改良之研探,國立台灣大學土木工程系,碩士論文,2010。
[52] 李金龍,電滲法結合微生物碳酸鈣膠結效應於黏土質地盤改良之研新,國立台北科技大學土木工程系,碩士論文,2017。

無法下載圖示 全文公開日期 2025/08/25 (校內網路)
全文公開日期 2025/08/25 (校外網路)
全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE