簡易檢索 / 詳目顯示

研究生: 謝祥恩
Siang-En Sie
論文名稱: 應用於低軌衛星通訊之雙極化共平面電容耦合陣列天線設計
Dual-polarized coplanar capacitively coupled array antenna for low-orbit satellite communications
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 謝松年
Sung-Nien Hsieh
廖文照
Wen-Jiao Liao
林信標
Hsin-Piao Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 雙極化天線低軌道衛星通訊電容耦合饋入相位陣列天線多層板架構
外文關鍵詞: Dual Polarization Antenna, Low Earth Orbit Satellite (LEO), Capacitively coupled feeding, Phase array antenna, multilayer board architecture
相關次數: 點閱:220下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了應用在Ku band低軌道衛星通訊系統之雙極化陣列天線設計,本設計應用情境可用於衛星通訊中上行以及下行之通訊。下行頻段設計於11 GHz ~12 GHz,上行頻段設計於13.75 GHz~14.6 GHz。為了能夠提高增益,本設計將以組成陣列的方式來達到提高增益的效果。上行及下行之2X2陣列天線在θ= 0°時,增益可達到11dBi;4x4陣列天線在θ= 0°時,增益可達到15dBi。
    此外,本研究也加入雙極化天線架構,在衛星通訊中,地面設備之天線極化使用了雙極化天線架構,在接收機的設計上,可以將兩個不同極化的訊號分開處理,利用訊號處理的方式得到正確的訊號。
    然而,為了因應第五代行動通訊覆蓋面積不足的問題,發展出相位陣列天線架構。有別於傳統機械式轉向,利用相位控制所達到的波束掃描更能夠精準的發射至目標物,也能大幅地降低建置成本。因此,本研究也將8x8陣列天線模擬了利用主動IC對天線進行相位控制,進而達到波束掃描效果,可達到±50°的掃描範圍。


    This study proposes a dual-polarization array antenna design applied to the Ku band low-orbit satellite communication system. The application scenario of this design can be used in the uplink and downlink frequency bands of satellite communication. The downlink frequency band is designed from 11 GHz to 12 GHz, and the uplink frequency band is designed from 13.75 GHz to 14.6 GHz. In order to increase the gain, this design will achieve the effect of increasing the gain by forming an array. The Broadside gain of the uplink and downlink 2X2 array antenna can reach 11dBi; the Broadside gain of the 4x4 array antenna can reach 15dBi.
    In addition, this paper also adds a dual-polarization antenna architecture. In satellite communication, the antenna polarization of the ground equipment uses a dual-polarization antenna architecture. In the design of the receiver, the signals of two different polarizations can be processed separately. Use signal processing to get the correct signal.
    However, in order to solve the problem of insufficient coverage of the fifth generation mobile communication, a phased array antenna architecture has been developed. Different from traditional mechanical steering, the beam scanning achieved by phase control can be more accurately launched to the target, and can also greatly reduce the construction cost. Therefore, this research also simulates the 8x8 array antenna using the active IC to control the phase of the antenna, and then achieve the beam scanning effect, which can reach a scanning range of ±50°.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 背景與動機 1 1.2 文獻探討 6 1.3 論文架構 8 第二章 天線理論 10 2.1 天線基本原理與參數 10 2.2 微帶天線設計與分析 17 2.2.1 貼片天線理論 17 2.2.2 矩形貼片天線設計 22 2.3 陣列天線理論 28 2.3.1 概述 28 2.3.2 兩單元線性陣列分析 28 2.3.3 均勻 N 個單元線性陣列 (Uniform N-Element Linear Arrays) 30 第三章 雙極化單元天線設計 32 3.1 概論 32 3.1.1 天線極化(Antenna Polarization) 32 3.1.2 雙極化天線(Dual Polarization Antenna) 35 3.2 雙極化單元天線設計 37 3.2.1 堆疊貼片天線(Stack Patch antenna)介紹 37 3.2.2 上行雙極化電容式耦合饋入單元天線設計 38 3.2.3 下行雙極化電容式耦合饋入單元天線設計 46 第四章 雙極化陣列天線設計 50 4.1 相位陣列天線介紹 50 4.2 上行雙極化陣列天線 52 4.2.1 2x2陣列天線 52 4.2.2 4x4陣列天線 63 4.3 下行雙極化陣列天線 69 4.3.1 2x2陣列天線 69 4.3.2 4x4陣列天線 79 4.4 模擬主動IC相位控制之8x8陣列天線(64單元) 85 4.4.1 8X8陣列天線架構及平面陣列分析 85 4.4.2 下行8X8陣列天線波束掃描 88 4.4.3 上行8X8陣列天線波束掃描 91 4.5 模擬主動IC相位控制之8x8陣列天線(以2x2 Sub-array 組成) 93 4.5.1 下行8X8陣列天線波束掃描 94 4.5.2 上行8X8陣列天線波束掃描 97 第五章 結論 102 參考文獻 103

    [1] S. Radavaram and M. Pour, "A Wideband Coplanar L-Strip Fed Rectangular Patch Antenna," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 9, pp. 1779-1783, 2021, doi: 10.1109/LAWP.2021.3096958.
    [2] K. M. Luk, Y. X. Guo, K. F. Lee, and Y. L. Chow, "L-probe proximity fed U-slot patch antenna," Electronics Letters, vol. 34, no. 19, pp. 1806-1807. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19981276
    [3] W. Hang, L. Ka-Leung, and L. Kwai-Man, "Design of dual-polarized L-probe patch antenna arrays with high isolation," IEEE Transactions on Antennas and Propagation, vol. 52, no. 1, pp. 45-52, 2004, doi: 10.1109/TAP.2003.822402.
    [4] K. L. Lau, K. M. Luk, and L. Deyun, "A wide-band dual-polarization patch antenna with directional coupler," IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 186-189, 2002, doi: 10.1109/LAWP.2002.807784.
    [5] M. Edimo, A. Sharaiha, and C. Terret, "Optimised feeding of dual polarised broadband aperture-coupled printed antenna," Electronics Letters, vol. 28, no. 19, pp. 1785-1787. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19921138
    [6] M. Yamazaki, E. T. Rahardjo, and M. Haneishi, "Construction of a slot-coupled planar antenna for dual polarisation," Electronics Letters, vol. 30, no. 22, pp. 1814-1815. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19941261
    [7] P. Brachat and J. M. Baracco, "Printed radiating element with two highly decoupled input ports," Electronics Letters, vol. 31, no. 4, pp. 245-246. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19950181
    [8] J. R. Sanford and A. Tengs, "A two substrate dual polarised aperture coupled patch," in IEEE Antennas and Propagation Society International Symposium. 1996 Digest, 21-26 July 1996 1996, vol. 3, pp. 1544-1547 vol.3, doi: 10.1109/APS.1996.549892.
    [9] I. Nystrom and D. Karlsson, "Reduction of back radiation and cross-coupling in dual polarized aperture coupled patch antennas," in IEEE Antennas and Propagation Society International Symposium 1997. Digest, 13-18 July 1997 1997, vol. 4, pp. 2222-2225 vol.4, doi: 10.1109/APS.1997.625411.
    [10] W. Kin-Lu and C. Tzung-Wern, "Design of dual polarized patch antennas fed by hybrid feeds," in 2000 5th International Symposium on Antennas, Propagation, and EM Theory. ISAPE 2000 (IEEE Cat. No.00EX417), 15-18 Aug. 2000 2000, pp. 22-25, doi: 10.1109/ISAPE.2000.894714.
    [11] B. Liu, H. Li, and C. Cheng, "A Coaxial Fed Dual-Polarized Patch Antenna with Wide-Bandwidth and Good Harmonic Suppression," in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 7-11 May 2018 2018, pp. 1-3, doi: 10.1109/ICMMT.2018.8563790.
    [12] V. G. Kasabegoudar and K. J. Vinoy, "Coplanar Capacitively Coupled Probe Fed Microstrip Antennas for Wideband Applications," IEEE Transactions on Antennas and Propagation, vol. 58, no. 10, pp. 3131-3138, 2010, doi: 10.1109/TAP.2010.2055781.
    [13] L. V. John, Antenna Engineering Handbook, Fourth Edition, Fourth Edition ed. New York: McGraw-Hill Education (in en), 2007.
    [14] J. R. James and P. S. Hall. Institution of Engineering and Technology, 1989.
    [15] J. Huang, "Microstrip antenna developments at JPL," IEEE Antennas and Propagation Magazine, vol. 33, no. 3, pp. 33-41, 1991, doi: 10.1109/74.88219.
    [16] T. S. P. See and Z. Ning Chen, "Design of dual-polarization stacked arrays for ISM band applications," Microwave and Optical Technology Letters, vol. 38, no. 2, pp. 142-147, 2003, doi: https://doi.org/10.1002/mop.10998.
    [17] S. Hienonen, A. Lehto, and A. V. Raisanen, "Simple broadband dual-polarized aperture-coupled microstrip antenna," in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), 11-16 July 1999 1999, vol. 2, pp. 1228-1231 vol.2, doi: 10.1109/APS.1999.789535.
    [18] F. Rostan and W. Wiesbeck, "Design considerations for dual polarized aperture-coupled microstrip patch antennas," in IEEE Antennas and Propagation Society International Symposium. 1995 Digest, 18-23 June 1995 1995, vol. 4, pp. 2086-2089 vol.4, doi: 10.1109/APS.1995.531005.
    [19] C. H. Tsao, Y. M. Hwang, F. Kilburg, and F. Dietrich, "Aperture-coupled patch antennas with wide-bandwidth and dual-polarization capabilities," in 1988 IEEE AP-S. International Symposium, Antennas and Propagation, 6-10 June 1988 1988, pp. 936-939 vol.3, doi: 10.1109/APS.1988.94241.
    [20] M. Barba, "A High-Isolation, Wideband and Dual-Linear Polarization Patch Antenna," IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1472-1476, 2008, doi: 10.1109/TAP.2008.922889.
    [21] K. M. Mak, H. Wong, and K. M. Luk, "A Shorted Bowtie Patch Antenna With a Cross Dipole for Dual Polarization," IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 126-129, 2007, doi: 10.1109/LAWP.2007.893106.
    [22] G. Yong-Xin, L. Kwai-Man, and L. Kai-Fong, "Broadband dual polarization patch element for cellular-phone base stations," IEEE Transactions on Antennas and Propagation, vol. 50, no. 2, pp. 251-253, 2002, doi: 10.1109/8.998004.
    [23] Z. Chen and X. Zhu, "Integration of mm-wave Antennas on Fan-Out Wafer Level Packaging (FOWLP) for Automotive Radar Applications," in 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 13-15 Nov. 2019 2019, pp. 168-169, doi: 10.1109/ICTA48799.2019.9012825.
    [24] W. Hong, K. H. Baek, and A. Goudelev, "Multilayer Antenna Package for IEEE 802.11ad Employing Ultralow-Cost FR4," IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5932-5938, 2012, doi: 10.1109/TAP.2012.2214196.
    [25] X. Gu et al., "A multilayer organic package with 64 dual-polarized antennas for 28GHz 5G communication," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 4-9 June 2017 2017, pp. 1899-1901, doi: 10.1109/MWSYM.2017.8059029.
    [26] D. Dogan and G. Gultepe, "A beamforming method enabling easy packaging of scalable architecture phased arrays," in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), 18-21 Oct. 2016 2016, pp. 1-4, doi: 10.1109/ARRAY.2016.7832562.

    QR CODE