簡易檢索 / 詳目顯示

研究生: 陳東宏
Dong - Hong Chen
論文名稱: 乙醇及硫含量對碳鋼於潮濕空氣之高溫氧化作用
Effect of Ethanol and Sulphur Content on the High-temperature Oxidation of Mild Steel in Moisture Atmosphere
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 鄭偉鈞
Wei-chun Cheng
葉宗洸
Zong Guang Ye
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 酒精汽油高溫氧化硫化乙醇
外文關鍵詞: The high temperature is oxidized, Ethanol., Sulphurate, Ethanol fuel
相關次數: 點閱:376下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用汽車結構用鋼(SAPH440)作為研究基礎材料,採取三階段實驗分析,經由先導實驗及因素作用評估實驗,探討乙醇及硫酸混合溶液於高溫環境中,對汽、機車排氣高溫區所使用材料之高溫氧化作用。最後進行600 oC、650 oC、700 oC、750 oC的空氣- 95 %乙醇蒸汽、空氣-水蒸汽與空氣氣氛之長時間高溫氧化實驗,並藉由顯微組織、質量改變及微觀結構中所測得之金屬損失,進一步探討其腐蝕行為。實驗結果顯示,溫度與氣氛對材料腐蝕特性有明顯的影響,且鋼料受到氣氛中所含之氫、氧元素的影響,其腐蝕反應機制由氧化反應所主導。材料經長時間高溫氧化後,依據氧化皮膜之XRD分析結果,在溫度高於570 oC的氧化會形成由外到內依序為Fe2O3/Fe3O4/FeO三相的氧化皮膜結構;在溫度低於570℃時,由外至內由外至內依序為Fe2O3、Fe3O4。此外,觀察試片於空氣- 95 %乙醇蒸汽、空氣-水蒸汽與空氣三種燃燒高溫腐蝕之腐蝕增重、金屬損失量與皮膜厚度之關係,以空氣- 95 %乙醇蒸汽之高溫腐蝕氣氛影響最大,空氣-水蒸汽氣氛次之,空氣氣氛最小。


    The mild steel of SAPH440 used for motorcycle and automobile exhaust pipe was oxidized by an experimentally sequential simulation in a high temperature containing ethanol, sulphur acid with against composition ratio at the temperature of 500oC, 600oC, and 700oC.
    An oxidation tests were also performed on the same material by varying an range oxidation temperature of 600 to 750oC with alcohol concentration of 95%. Water vapor and air in the atmosphere chamber may simultaneously oxidize a metal and alloys for a long time exposure. The behavior of oxidation corrosion of the material was investigated by the weight change, the thickness of scale formed, and the microstructure of the sample after the oxidation test.
    The experimental results show that the temperature and an atmosphere condition containing hydrogen, oxygen and other oxidant elements had obviously influenced the corrosion characteristic of material. The presence of these elements lead to the main factor in the mechanism of oxidation corrosion. After oxidation test, according to XRD analysis the scale formed and covered of surface material composed of Fe2O3/Fe3O4/FeO at the above 570oC temperature by forming thin membrane. In contrast, at the lower temperature, FeO was not found because FeO had separated into constituents of Fe3O4 and Fe. At the lower temperature of 570oC, Fe2O3 and Fe3O4 were found in the outside and inside of scale formed as corrosion products. In addition, the weight lost increased by thickening of thin membrane of scale to generate corrosion product at a different temperature treatments in the atmosphere containing 95 % ethanol, pure water, and air. Whereas, mechanism of oxidation corrosion just took the second stage and minimum effect for the pure water and air, respectively.

    目 錄 摘 要..................................................................................................... I Abstract .....................................................................................................II 誌 謝.................................................................................................. IV 第一章 前言...............................................................................................1 第二章 文獻回顧.......................................................................................4 2.1 高溫氧化..........................................................................................4 2.1.1 氧化熱力學..............................................................................4 2.1.2 氧化物之缺陷..........................................................................7 2.1.3 外來離子在氧化物之擴散......................................................8 2.1.4 純鐵(Fe)的高溫氧化................................................................9 2.2 汽醇................................................................................................11 2.2.1 近代汽醇發展情況................................................................11 2.2.2 乙醇的特性............................................................................12 2.3 硫酸................................................................................................13 2.4 水蒸汽對高溫腐蝕之影響............................................................14 2.5 鬚晶成長機制................................................................................19 2.5.1 軸向螺旋差排成長機制........................................................19 2.5.2 VLS 成長機制.........................................................................20 2.5.3 擴散控制的成長機制............................................................21 2.5.4 應力誘發成長機制................................................................22 2.6 實驗計劃法....................................................................................23 2.6.1 單因素法................................................................................24 2.6.2 全因素法................................................................................26 VII 2.6.3 田口方法................................................................................27 2.6.4 變異數分析............................................................................31 第三章 實驗方法.....................................................................................33 3.1 實驗計劃........................................................................................33 3.2 實驗流程與方法............................................................................35 3.2.1 實驗流程................................................................................35 3.2.2 實驗材料與試片準備............................................................36 3.2.3 實驗步驟................................................................................36 3.3 分析方法與設備............................................................................42 3.3.1 分析設備................................................................................42 3.3.2 分析方法................................................................................42 第四章 實驗結果與討論.........................................................................46 4.1 先導實驗........................................................................................46 4.2 因素作用評估實驗........................................................................50 4.3 空氣-95 %乙醇蒸汽氣氛之高溫腐蝕反應機制及相組成..........59 4.4 PO2 與PH2O 之效應......................................................................82 表4-14 溶液消耗量及凝結水增加量..................................................83 第五章 結論.............................................................................................84 參考文獻...................................................................................................85 VIII 圖目錄 圖2-1 金屬氧化反應之Ellingham 圖....................................... 6 圖2-2 鐵-氧平衡相圖......................................................... 10 圖2-3 在570 oC 以上,鐵生成FeO、Fe2O3 和Fe3O4 三相氧化層結構 的擴散步驟及界面反應............................................. 10 圖2-4 軟鋼於950 oC 高溫氧化形成之皮膜型態。(a) 88 %氧氣+12 % 空氣-水蒸汽蒸氣,(b) 乾燥氧氣................................. 15 圖2-5 解離機構之原理。(a) 內層氧化物生成之初使階段,(b) 氣氛 中含H2O 之解離機構............................................... 16 圖2-6 鐵於含H2O 氣氛氧化之反應機制................................ 18 圖2-7 (a) 2 水準時,(b) 3 水準時......................................... 24 圖3-1 實驗計劃之階段、目的及選用參數示意圖..................... 34 圖3-2 本研究之實驗流程圖................................................. 35 圖3-3 管狀爐之試片擺設示意圖.......................................... 37 圖3-4 管狀爐之試片擺設配置及溫度區域分布........................ 37 圖3-5 製備程序示意圖....................................................... 38 圖3-6 腐蝕皮膜及試片於X-ray 繞射分析之夾持方式............... 44 圖3-7 ASTM G54 侵蝕深度量測示意圖................................. 45 圖3-8 侵蝕深度量測設備圖................................................. 45 圖4-1 乙醇與硫酸含量對腐蝕增重變化關係曲線..................... 53 圖4-2 乙醇與硫酸含量對皮膜厚度變化關係曲線..................... 54 圖4-3 乙醇與硫酸含量對金屬損失量變化關係曲線................. 54 圖4-4 鋼料於5 %乙醇與5 %硫酸混合溶液,經500 oC 腐蝕24 小時 之XRD 分析結果。(a)氧化皮膜最外層,(b) 氧化皮膜內56 IX 圖4-5 鋼料於5 %乙醇與5 %硫酸混合溶液,經600 oC 腐蝕24 小時 之XRD 分析結果。(a)氧化皮膜最外層,(b) 氧化皮膜內57 圖4-6 鋼料於5 %乙醇與5 %硫酸混合溶液,經700 oC 腐蝕24 小時 之XRD 分析結果。(a)氧化皮膜最外層,(b) 氧化皮膜內58 圖4-7 空氣-95 %乙醇蒸汽氣氛中,經不同溫度及時間高溫腐蝕後之 外觀...................................................................... 61 圖4-8 空氣-水蒸汽氣氛中,經不同溫度及時間高溫腐蝕後之外. 62 圖4-9 空氣氣氛中,經不同溫度及時間高溫腐蝕後之外觀........ 63 圖4-10 空氣-95 %乙醇蒸汽氣氛中,經不同溫度高溫腐蝕後之表面 形貌,(a)600 oC,(b)650 oC...................................... 64 圖4-11 空氣-95 %乙醇蒸汽氣氛中,經不同溫度高溫腐蝕後之表面 形貌,(a)700 oC,(b)750 oC...................................... 65 圖4-12 空氣-95 %乙醇蒸汽氣氛中,經不同溫度高溫腐蝕後之截面 金相,(a)600 oC,(b)650 oC,(c)700 oC,(d)750 oC........ 66 圖4-13 鋼料於空氣-95 %乙醇蒸汽氣氛,經500 oC 腐蝕24 小時之 XRD 分析結果。(a)氧化皮膜最外層,(b) 氧化皮膜內側 ........................................................................... 67 圖4-14 鋼料於空氣-95 %乙醇蒸汽氣氛,經600 oC 腐蝕24 小時之 XRD 分析結果。(a)氧化皮膜最外層,(b) 氧化皮膜內側 ........................................................................... 68 圖4-15 鋼料於空氣-95 %乙醇蒸汽氣氛,經700 oC 腐蝕24 小時之 XRD 分析結果。(a)氧化皮膜最外層,(b) 氧化皮膜內側 ........................................................................... 69 圖4-16 單位面積的腐蝕增重與腐蝕時間平方根關係圖。(a) 空氣- 95%乙醇蒸汽氣氛,(b) 空氣-水蒸汽氣氛,(c) 空氣氣氛 ........................................................................... 75 X 圖4-17 金屬損失量與腐蝕時間平方根關係圖。(a)空氣- 95 %乙醇蒸 汽氣氛,(b) 空氣-水蒸汽氣氛,(c) 空氣氣氛.............. 77 圖4-18 皮膜厚度與腐蝕時間平方根關係圖。(a)空氣- 95 %乙醇蒸汽 氣氛,(b) 空氣-水蒸汽氣氛,(c) 空氣氣氛................. 79 圖4-19 單位面積的腐蝕增重與溫度關係圖............................ 81 XI 表目錄 表2-1 單因素法實驗程序.................................................... 25 表2-2 全因素實驗配置之試驗次數....................................... 26 表2-3 3 因素3 水準全因素配置........................................... 28 表2-4 Graeco 拉丁方格型配置............................................. 29 表2-5 L9(34)直交表............................................................ 29 表3-1 汽車結構用鋼(SAPH440)之化學成分(wt%).................... 36 表3-2 田口式實驗設計參數規劃表....................................... 38 表3-3 田口式實驗設計四因素三水準配置.............................. 39 表3-4 因素作用評估實驗參數規劃表.................................... 39 表4-1 田口式實驗設計之腐蝕增重....................................... 46 表4-2 田口式實驗設計之皮膜厚度....................................... 47 表4-4 腐蝕增重之變異數分析............................................. 48 表4-5 皮膜厚度之變異數分析............................................. 48 表4-6 金屬損失量之變異數分析.......................................... 48 表4-7 因素作用評估實驗之腐蝕增重.................................... 52 表4-8 因素作用評估實驗之皮膜厚度.................................... 52 表4-9 因素作用評估實驗之金屬損失量................................. 53 表4-10 鋼料於空氣-95 %乙醇蒸汽、空氣-水蒸汽與空氣三種燃燒氣 氛之高溫腐蝕增重.................................................. 71 表4-11 鋼料於空氣-95 %乙醇蒸汽、空氣-水蒸汽與空氣三種燃燒氣 氛之腐蝕反應速率常數............................................ 72 表4-12 鋼料於空氣-95 %乙醇蒸汽、空氣-水蒸汽與空氣三種燃燒氣 氛經高溫腐蝕之皮膜生成厚度結果............................ 73 表4-13 鋼料於空氣-95 %乙醇蒸汽、空氣-水蒸汽與空氣三種燃燒氣 XII 氛經高溫腐蝕之金屬損失量結果............................... 74 表4-14 溶液消耗量及凝結水增加量...................................... 83

    參考文獻
    [1] D. L. Hagen, “Methanol as a Fuel : A Review with Bibliography”, SAE Paper 770792 (1977).
    [2] F. Black, An Overview of the Technical Implications of Methanol and Ethanol as Highway Motor Vehicle Fuels, SAE Paper 912413 (1991).
    [3] 何文淵,“汽油車引擎廢氣揮發性有機物成份及光化反應潛試”,國立成功大學環境工程研究所,碩士論文 (1999)。
    [4] 黃靖雄,“現代汽車引擎",全華科技圖書股份有限公司 (2000)。
    [5] S. Poulopoulos, and C. Philippopoulos, “Influence of MTBE addition into gasoline on automotive exhaust emissions”, Atmospheric Environment , Vol. 34, pp. 4781-4786 (2000).
    [6] 陳厚良,“替代性燃油-汽醇對機車引擎排放特性之研究”,國立屏東科技大學環境工程與科學研究所,碩士論文 (2005)。
    [7] A. Kowalewicz, “Methanol as a fuel for spark ignition engines : a review and analysis,” Proc. I. Mech. E., Vol.207, Part D : Journal of Automobile Engineering, pp.43-52 (1993).
    [8] 吳展維,“乙醇-汽油混合燃料之實際應用”,國立成功大學機械工程研究所,碩士論文 (2001)。
    [9] 行政院環境保護署,「汽油空氣污染防治費分級收費制度及車用油品管制制度建立計畫」,(2000) EPA-89-FA13-03-89。
    [10] 日本規格協會,in:〝JISハソドブック1-2鉄鋼Ⅱ〞,日本規格協會,pp. 111 (1995)。
    [11] 鐘清章校訂,“田口式品質工程導論”,中華民國品質管制學會,台北 (1993)。
    [12] 鄭燕琴,“田口式品質工程技術理論及實務”,中華民國品質管制學會,台北 (1993)。
    [13] 林秀雄,“田口方法與低成本品質工程”,新知企業管理顧問有限公司 (1992)。
    [14] 洪舜立,“低碳鋼熱浸純鋁之研究”,國立台灣工業技術學院機械工程技術研究所,碩士論文 (1995)。
    [15] 郭朝洲,“田口式實驗設計於有機鍍鋁之應用”,國立台灣工業技術學院機械工程技術研究所,碩士論文 (1994)。
    [16] 王朝正,“高溫腐蝕”,工程,第七十五卷第三期,pp. 97-110(2002)。
    [17] N. Birks and G. H. Meier, in “Introduction to High Temperature Oxidation of Metals”, Edward Arnold,London, pp. 17 (1983).
    [18] 李美栓,“金屬的高溫腐蝕”,冶金工業出版社,中國 (2001)。
    [19] 劉孝虹,“430熱浸鍍鋁矽於氯化鈉蒸汽之氧化物鬚晶成長及高溫腐蝕機制”,國立台灣科技大學機械工程研究所,碩士論文 (2006)。
    [20] A. S. Khanna, “High Temperature Oxidation and Corrosion”. ASM International, pp. 84-85 (2002).
    [21] F. K. Knapp, W. Ray, P. Siudak, and R. Snow , “Influence of ethanol-blended fuels on the emissions from three pre-1985 light-duty passenger vehicles”, Air and Waste Management Association, Vol. 46, pp. 1149-1161 (1996) .
    [22] 賈樹彪、李盛賢、吳國峰,“新編酒精工藝學”,化學工業出版社,中國 (2004)。
    [23] W. D. Hsieha, R. H. Chenb, T. L. Wub, and T.H. Lina , “Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels”, Atmospheric Environment., Vol. 36, pp. 403-410. (2002)
    [24] C. W. Tuck, M. Odger, and K. Sachs , “The Oxidation of Iron at 950 oC in Oxygen/Water Vapor Mixture”, Corr. Sci, Vol. 9, pp. 271-285 (1969).
    [25] 潘正益,“鐵基合金沈積氯化鈉/硫酸鈉混合鹽於燃燒爐之熱腐蝕”,國立台灣科技大學機械工程研究所,博士論文 (2004)。
    [26] C. J. Fujii, and R. A. Meussner , “The Mechanism of The High-Temperature Oxidation of Iron-Chromium Alloys in Water Vapor”, J. Electrochem. Soc., Vol. 111, No. 11, pp. 1215-1221 (1964).
    [27] A. Rahmel, and J. Tobolski, “Influences of Water Vapor and Carbon Dioxide on the Oxidation of Iron in Oxygen at High Temperature”, Corr. Sci., Vol. 5, pp. 333-346 (1965).
    [28] C. C. Evans, “Whisker”, Mills Boon Limitedof, Lodon, pp. 1-68 (1972).
    [29] F. C. Frank, “The Tinfluence of dislocation on crystal growth”. Disc. Far. Soc., pp. 48-54 (1949).
    [30] F. C. Frank, “In growth and perfection crystal”, Wiley, New York, pp. 350-360 (1958).
    [31] 李武,“無機鬚晶”,化學工業出版社,中國 (2005)。
    [32] E. P. Butler, E. T. Mitchell and D. A. Voss, “Growth of Hematite Blades During the High Temperature Oxidation of Iron”, Metallurgical Transaction A(Physical Metallurgy and Materials Science), Vol.13A, No.5, pp. 929 (1982).
    [33] L. Mikkelsen and S. Linderoth, “High temperture oxidation of Fe-Cr alloy in O2-H2-H2O atmosphere; microstructure and kinetics”, Materials Science and Engineering A361, pp. 198 (2003).
    [34] P. T. Moseley and K. R. Hyde, “The microstructure of the scale formed during the high temperature oxidation of a Fe-Cr alloy steel”, Corrosion Science, Vol.24, No.6, pp. 547-565 (1984).
    [35] W. Gao and G. Li, “The Development and Application of Hot-Dip Aluminum Coating”, Heat Treatment of Metals, Vol.6, pp. 11-15 (1991).
    [36] U Lindborg, “Observations on the Growth of Whisker Crystals from Zinc Electroplate”, Metallurgical, Vol.6, No.8, pp. 1581-1586 (1975).
    [37] Reima Lahtinen, and Tom E. Gustafsson, “The Driving Force Behind Whisker Growth”, Metal Finishing., Vol. November, pp. 25-28 (2005).

    [38] 吳玉印,“實驗計劃法”,中國生產力中心,台北 (1971)。
    [39] 姚景星、劉睦雄,“實驗計劃法”,茂昌圖書有限公司,台北 (1979)。
    [40] 吳玉印,“新版實驗計劃法”,中華民國品質管制學會,台北 (1976)。
    [41] 許金明、陳世鐘、喬莉莉,“金相樣品製備專刊”,金達科技股份有限公司,台北 (2004)。
    [42] H. Boettger and F. Umland, Werkst. Korros. Vol.25 (1974) 805.
    [43] J. Stringer, “Hot Corrosion of High-Temperature Alloys” Ann. Rev. Mat. Sci., Vol. 7, pp. 477-509 (1977).
    [44] J. A. Goebel and F. S. Pettit, “Na2SO4-Induced Accelerated Oxidation (Hot Corrosion) of Nickel” Met. Trans., Vol. 1, pp. 1943-1954 (1970).
    [45] P. T. Moseley and K. R. Hyde, “The microstructure of the scale formed during the high temperature oxidation of a Fe-Cr alloy steel”, Corrosion Science, Vol. 24, No.6, pp. 547-565 (1984).
    [46] I. Saeki, H. Konno and R.Furuichi, Corr.Sci.Vol.38, pp. 19-31(1996).
    [47] A.S.Khanna, “High Temperature Oxidation and Corrosion”, ASM international, pp.1-11 (2002).
    [48] G. Chaudron and H. Forestier, Comptes rendus, Vol.178, pp 2173-2176 (2002).
    [49] J. C. Nicholas and M. H. Thelma , Oxid. Met, Vol.28, pp. 237-258(1987).
    [50] C. Wagner, Phys. Chem., Vol. 21, pp. 25 (1933).
    [51] M. Ueda, M. Nanko, and T. Maruyama, Extended abstract of the 1999 Joint International Meeting of ESC, Vol. 99-2, No. 1699, Hawaii (1999).

    QR CODE