簡易檢索 / 詳目顯示

研究生: 黃薇臻
Wei-Chen Huang
論文名稱: 以常壓電漿噴束製備海水摻雜改質氧化鐵/氧化鋁載氧體運用於化學迴路燃燒程序之研究
Seawater-modified Fe2O3/Al2O3 Oxygen Carriers by an Air-Atmospheric Pressure Plasma Jet for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 胡毅
Yi Hu
沈來宏
Lai-Hong Shen
徐恆文
Heng-Wen Hsu
邱耀平
Yau-Pin Chyou
顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
李豪業
Hao-Yeh Lee
郭俞麟
Yu-Lin Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 184
中文關鍵詞: 化學迴路燃燒程序鐵系載氧體常壓電漿噴束海水摻雜改質實驗級半套式流體化床反應器
外文關鍵詞: Chemical looping combustion, Iron-based oxygen carriers, Atmospheric pressure plasma jet, Seawater-modified, Lab-scaled semi-fluidized bed reactor
相關次數: 點閱:407下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴路燃燒程序為一種同時兼具有低成本、高能源效率及二氧化碳捕獲的新穎燃燒程序,其技術原理為使用金屬氧化物擔任載氧體於兩個反應器之間進行交互還原/氧化反應,傳遞熱能與氧氣,以防止燃料與空氣直接接觸產生二氧化碳、二氧化硫及氮氧化物之混合性氣體,進而達到二氧化碳捕獲的效果。一般而言,載氧體於化學迴路燃燒程序中之效益將受到各載氧體性能、反應器設計及燃料選擇影響,其中又以載氧體之性能最為重要,扮演著熱與氧的傳遞樞紐,為影響整體反應是否連續操作之關鍵。常見的載氧體中,鐵系載氧體具有高機械強度、低成本及對環境無衝擊性等優點,為運用於化學迴路燃燒程序中最廣泛且具高商業化價值之金屬氧化物系統;但是,鐵系載氧體之多氧化相態,於燃料/空氣反應器中進行還原/氧化反應時,多重結構成分之變化將導致還原速率複雜及燃料轉換效果略低等問題,成為使用該系統載氧體於化學迴路燃燒程序中之主要障礙。因此,本研究將藉由海水中之鹼金屬、鹼土金屬元素摻雜改質鐵系載氧體,試圖提升其於化學迴路燃燒程序中之還原動力。
首先,針對氧化鐵活性載氧體分別於不同氣體燃料中進行還原性能之探討,隨後並添加不同比例之氧化鋁惰性擔體於氧化鐵載氧體系統中,嚴選一種適合比例之氧化鐵/氧化鋁載氧體。可以發現,氧化鐵於各氣體料氣氛下之初始還原溫度將隨有所不同,且依序所表現之初始還原溫度由高至低依序為一氧化碳、合成氣與氫氣,顯示於一氧化碳氣氛下,較低之能量即可以使氧化鐵進行還原。而當氧化鐵與氧化鋁比例為60:40時,該系統載氧體則具有較佳之抗磨耗能力、反應活性以及反應穩定性,故本實驗將使用該比例氧化鐵/氧化鋁載氧體進行後續之摻雜改質程序之評估,並且透過常壓電漿噴束製備含鈉水溶液,以1-10 wt. %的濃度摻雜改質氧化鐵/氧化鋁載氧體,以探討鈉摻雜改質濃度對於氧化鐵/氧化鋁載氧體之影響。結果顯示,不同鈉摻雜改質濃度將造成氧化鐵氧化鋁載氧體之結晶結構、表面形貌及比表面積發生變化,進而影響其於實際操作條件下之燃料轉化能力及高溫循環穩定性。其中,當鈉摻雜改質濃度為1 wt. %時,微量之鈉將促使該載氧體系統於還原/氧化反應下進行離子擴散,使載氧體內部形成孔洞,提升載氧體之反應比表面積,進而促進該載氧體系統於反應氣氛下之氣-固反應,維持鈉摻雜改質氧化鐵/氧化鋁載氧體於高溫多圈反應下之循環穩定性,以利該系統載氧體運用於化學迴路燃燒程序。
另一方面,海水以常壓電金噴束製備無氯之鹼金屬、鹼土金屬水溶液摻雜改質失活氧化鐵/氧化鋁載氧體將依據上述之製備參數加以研究,以評估海水摻雜改質失活氧化鐵/氧化鋁載氧體之可行性。結果顯示,常壓電漿噴束將依照前驅物霧化、電漿氧化及氧化物顆粒溶解之程序,製備獲得無氯之鹼金屬、鹼土金屬水溶液。若加以摻雜改質於失活氧化鐵/氧化鋁載氧體中,將可使該系統載氧體於實驗級半套式流體化床反應器中進行五十圈之燃料轉化率高達0.93值,表現明顯優於原始之氧化鐵/氧化鋁載氧體及失活氧化鐵/氧化鋁載氧體佳,故以常壓電漿噴束製備海水摻雜改質失活氧化鐵/氧化鋁載氧體運用於化學迴路燃燒程序中將極具優越之前瞻性。


Chemical looping combustion (CLC) is classified as an emerging clean combustion process, where metal oxide (MexOy) as oxygen carrier is used to provide the oxygen sources for the combustion reaction, thereby achieving the inherent CO2 capture for the indirect contact between fuel and air. It is widely discussed that the development of the oxygen carriers, reactor design and fuel selection are the critical issues for the CLC process. Especially the development of oxygen carriers, the transfer ability of the heat and oxygen within the fuel/air reactor, avoiding the air direct connecting to the fuel are concerned. Of the feasible candidates, iron-based oxygen carrier (hematite, Fe2O3) is the most promising oxygen carrier for the commercial CLC application, because of its relative thermal stability, mechanical strength and low price. Unfortunately, the poor reduction kinetics of Fe2O3 is the major drawback during the high temperature operation, attributing to the three intermediate states in the reduction period. Therefore, the feasibility of using alkali- and alkaline earth-metals contained in the seawater can be utilized as the catalytic agents for Fe2O3 oxygen carrier in chemical looping combustion process was investigated to improve the reduction kinetics in this study.
The reduction kinetics of Fe2O3 oxygen carrier in fuel gases and different ratios of Fe2O3/Al2O3 as oxygen carriers are primarily discussed. The initial reduction temperature is found to be strongly depended on the fuels with the order of carbon monoxide > syngas > hydrogen. The Fe2O3/Al2O3 oxygen carrier with 60wt% Fe2O3 (FA32) shows successful attrition behavior, reaction activity and thermal stability in the CLC process. Furthermore, the formation mechanism for sodium-contained solution preparation via air atmospheric pressure plasma jet (Air-APPJ) method is also investigated, as well as assessing the sodium-modified FA32 oxygen carrier. With the Sodium dopant loading in the FA32 oxygen carrier increasing from 1 wt. % to 10 wt. %, Nax_FA32 samples with different crystalline structure and surface morphology caused the fuel conversion ability and the stability performance in the practical operation process. The enhanced properties such as the reduction behavior, thermal stability and attrition resistance of Na1_FA32 without degradation were feasibly achieved in the lab-scaled semi-fluidized bed reactor (semi-FzBR). Optimistic results were attributed to the promotion of the pore structure and the improvement on the selectivity of the fuel conversion from the sodium promoter.
Moreover, the use of seawater as a precursor to prepare the alkali- and alkaline earth- dopants using an Air-APPJ method. A three-step of the preparation route is proposed as ultrasonic atomization, plasma oxidation and dissolution. Based on the formation mechanism, dopants without any chlorine-containing residues modifying inreactive FA32 oxygen carrier (Na1_inFA32_seawater) has been established, which led to an improved reduction performance as compared to the raw FA32 and inreactive FA32 oxygen carriers. The high gas yield for syngas as fuel (Ysyngas) around 0.93 after fifty redox cycles for the Na1_inFA32_seawater oxygen carrier is achieved. It can be anticipated that the alkali- and alkaline earth metals-modified Fe2O3/Al2O3 samples from seawater by an Air-APPJ system as an oxygen carrier candidate in a reversible CLC process would be notably attractive.

中文摘要 I 英文摘要 III 致謝 V 目錄 VII 圖索引 XI 表索引 XVII 第一章 緒論 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 2.1 化學迴路燃燒程序 5 2.2 載氧體的性能 7 2.2.1 高溫還原/氧化性質 7 2.2.2 載氧能力 10 2.2.3 抗團聚能力 11 2.2.4 機械強度 13 2.2.5 成本 14 2.2.6 環境友善性 14 2.3 載氧體的選擇 15 2.3.1 鐵系(Fe2O3/ Fe3O4/ FeO/ Fe)載氧體 15 2.3.2 鎳系(NiO/ Ni)載氧體 21 2.3.3 銅系(CuO/ Cu2O/ Cu)載氧體 23 2.3.4 錳系(Mn2O3/ Mn3O4/ MnO/ Mn)載氧體 25 2.3.5 鈷系(Co3O4/ CoO/ Co)載氧體 26 2.3.6 複合型載氧體 27 2.4 惰性擔體的選擇 37 2.4.1 氧化鋁(Al2O3)惰性擔體 37 2.4.2 二氧化矽(SiO2)惰性擔體 41 2.4.3 二氧化鈦(TiO2)惰性擔體 37 2.4.4 氧化鋯(ZrO2)惰性擔體 45 2.4.5 膨潤土(Bentonite, Al2Si4O10)惰性擔體 46 2.5 金屬摻雜改質載氧體/惰性擔體系統 47 2.5.1 鹼金/鹼土金屬元素 47 2.5.2 過渡/貧金屬元素 53 2.5.3 稀土金屬元素 57 2.6 燃料的種類 59 2.7 反應器設計與種類 61 第三章 實驗設備與程序 3.1 實驗藥品 64 3.2 材料製備 65 3.2.1 含鈉水溶液 65 3.2.2 氧化鐵/氧化鋁載氧體 65 3.2.3 摻雜改質氧化鐵/氧化鋁系統載氧體 66 3.3 實驗設備與分析儀器 67 3.3.1 常壓電漿噴束(Atmospheric-pressure plasma jet) 67 3.3.2 感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Atomic Emission Spectrometry) 68 3.3.3 X光繞射儀(X-Ray Diffractometer) 68 3.3.4 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy 68 3.3.5 比表面積分析儀(Specific surface area analyzer) 69 3.3.6 磨耗測試儀(Air-jet attrition tester) 69 3.3.7 熱重分析儀(Thermogravimetric Analyzer) 69 3.3.8 實驗級半套式流體化床反應器(Lab-scaled semi-fluidized bed reactor) 70 第四章 結果與討論 4.1 氧化鐵/氧化鋁載氧體運用於不同氣體燃料氣氛下之探討 71 4.1.1 氣體燃料效應 71 4.1.2 活性載氧體/惰性擔體之比例效應 78 4.1.3 氧化鐵/氧化鋁載氧體運用於實驗級半套式流體化床 89 4.2 鈉摻雜改質濃度對於氧化鐵/氧化鋁載氧體之影響 97 4.2.1 含鈉水溶液之製備 97 4.2.2 物理性質分析 100 4.2.3 化學性質分析 105 4.3 海水摻雜改質失活氧化鐵/氧化鋁載氧體之實際運用之評估 115 4.3.1 氯化鈉溶液作為前驅物製備含鈉水溶液 115 4.3.2 鈉摻雜改質失活氧化鐵/氧化鋁載氧體 118 4.3.3 海水摻雜改質失活氧化鐵/氧化鋁載氧體 125 第五章 結論與未來展望 5.1 氧化鐵/氧化鋁載氧體 133 5.2 摻雜改質氧化鐵/氧化鋁載氧體 135 5.3 海水摻雜改質失活氧化鐵/氧化鋁載氧體 136 5.4 未來展望 138 參考文獻 139 附件 155

1. H. Herzog, B. Eliasson, O. Kaarstad, Capturing greenhouse gases, Sci. Am. 282 (2000) 72-79.
2. 陳巾眉、蔡麗伶,「氣候變遷Q&A:溫室氣體會滯留在大氣中多久」,環境資源中心 (2012)。
3. U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014, Washington, U.S., 2006.
4. International Energy Agency, World Energy Investment Outlook | Special Report, Paris, France, 2014.
5. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, Advances in CO2 capture technology - The U.S. department of energy’s carbon sequestration program, Int. J. Greenh. Gas Con. 2 (2008) 9-20.
6. A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar, P. K. Chatterjee, Present status and overview of chemical looping combustion technology, Renew. Sust. Energ. Rev. 59 (2016) 597-619.
7. National Energy Technology Laboratory, DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap, U.S., 2010.
8. H. Fang, L. Haibin, Z. Zengli, Advancements in development of chemical-looping combustion: a review, Int. J. Greenh. Gas Con. 2009 (2009) 1-16.
9. J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 (2012) 215-282.
10. T. Mattisson, M. Johansson, A. Lyngfelt, Multicycle Reduction and oxidation of different types of iron oxide particles - application to chemical-looping combustion, Energy Fuels 18 (2004) 628-637.
11. Y.X. Zhang, E. Doroodchi, B. Moghtaderi, Reduction kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion, Energy Fuels 29 (2015) 337-345.
12. H.R. Paneth, The mechanism of self-diffusion in alkali metals, Phys. Rev. 80 (1950) 708-711.
13. H. Johansson, J. Byegård, G. Skarnemark, M. Skålberg, Matrix diffusion of some alkali- and alkaline earth- metals in granitic rock, Mater. Res. Soc. Symp. Proc. 465 (1997) 871-878.
14. F.J. Millero, Chemical oceanography, Fourth Edition, CRC press, London, New York, 2012.
15. Y.M. Su, Y. L. Kuo, C.M. Lin, S.F. Lee, One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet, Powder Tech. 267 (2014) 74-79.
16. W.C. Huang, Y.L. Kuo, Y.M. Su, Y.H. Tseng, H.Y. Lee, Y. Ku, A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process, Chem. Eng. J. 316 (2017) 15-23.
17. P.C. Chiu, Y. Ku, Chemical looping process - a novel technology for inherent CO2 capture, Aerosol Air Qual. Res. 12 (2012) 1421-1432.
18. H.J. Richter, K.F. Knoche, Reversibility of combustion process, efficiency and costing, ACS Symp. Ser. 235 (1983) 71-85.
19. M. Ishida, D. Zheng, T. Akehata, Evaluation of a Chemical-looping-combustion power-generation system by graphic exergy analysis, Energy 12 (1987) 147-154.
20. M. Ishida, M. Yamamoto, T. Ohba, Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃, Energy Convers. Manage. 43 (2002) 1469-1478.
21. P. Moldenhauer, M. Rydén, A. Lyngfelt, Testing of minerals and industrial by-products as oxygen carriers for chemical-looping combustion in a circulating fluidized-bed 300W laboratory reactor, Fuel 93 (2012) 351-63.
22. K.S. Kang, C.H. Kim, K.K. Bae, W.C. Cho, S.H. Kim, C.S. Park, Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production, Int. J. Hydrogen Energy 35 (2010) 12246-12254.
23. B. Kronberger, G. Löffler, H. Hofbauer, Simulation of mass and energy balances of a chemical-looping combustion system, Int. J. Energy Clean Env. 6 (2005) 1-14.
24. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, Mapping of the range of operational conditions for Cu-, Fe- and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62 (2007) 533-549.
25. M.M. Hossain, H.I. de Lasa, Chemical-looping combustion (CLC) for inherent CO2 separations - a review, Chem. Eng. Sci. 63 (2008) 4433-4451.
26. D.R. Gaskell, Introduction to the thermodynamics of materials, Fourth Edition, Taylor & Francis, New York, 2003.
27. E. Jerndal, T. Mattisson, A. Lyngfelt, Thermal analysis of chemical-looping combustion, Chem. Eng. Res. Des. 84(9) (2006) 795-806.
28. P. Fennell, B. Anthony, Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, First Edition, Woodhead Publishing, Cambridge, UK, 2015.
29. M.R. Quddus, A novel mixed metallic oxygen carrier for chemical looping combustion preparation, characterization and kinetic modeling, Ph.D. Thesis, The University of Western Ontario, Canada, 2013.
30. M. Bartels, W. Lin, J. Nijenhuis, F. Kapteijn, J.R. van Ommen, Agglomeration in fluidized beds at high temperatures: mechanisms detection and prevention, Prog. Energy Combust. Sci. 34 (2008) 633-666.
31. J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad, Selection of oxygen carriers for chemical-looping combustion, Energy Fuels, 18 (2004) 371-377.
32. ASTM, D5757-95: Standard Test Method for Determination of Attrition and Abrasion of Powdered Catalysts by Air Jets, ASTM, Philadelphia, 1995.
33. A. Cabello, P. Gayán, F. García-Labiano, L.F. de Diego, A. Abad, J. Adánez, On the attrition evaluation of oxygen carriers in Chemical Looping Combustion, Fuel Process. Technol. 148 (2016) 188-197.
34. Mineral commodity summaries. U.S. Geological Survey, Reston, Virginia, 2016
35. M.K. Chandel, A. Hoteit, A. Delebarre, Experimental investigation of some metal oxides for chemical looping combustion in a fluidized bed reactor, Fuel 88 (5) (2009) 898-908.
36. M. Tang, L. Xu, M. Fan, Progress in oxygen carrier development of methane-based chemical-looping reforming: a review, Appl. Energy 151 (2015) 143-156.
37. O.J. Wimmers, P. Arnoldy, J.A. Moulijn, Determination of the reduction mechanism by temperature-programmed reduction: application to small Fe2O3 particles, J. Phys. Chem. 90 (1986) 1331-1337.
38. E.R. Monazam, R.W. Breault, R. Siriwardane, Kinetics of hematite to wüstite by hydrogen for chemical looping combustion, Energy Fuels 28 (8) (2014) 5406-5414.
39. H.Y. Lin, Y.W. Chen, C. Li, The mechanism of reduction of iron oxide by hydrogen, Thermochim. Acta 400 (2003) 61-67.
40. A. Pineau, N. Kanari, I. Gaballah, Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite, Thermochim. Acta 447 (2006) 89-100.
41. A. Pineau, N. Kanari, I. Gaballah, Kinetics of reduction of iron oxides by H2 Part II: Low temperature reduction of magnetite, Thermochim. Acta 456 (2007) 75-88.
42. F. Li, Chemical looping gasification process, Ph.D. Thesis, The Ohio State University, Columbus, Ohio, 2009.
43. J.I. Yang, Study on the application of metal-modified iron ore in a fluidized-bed reactor for chemical looping process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2014.
44. T. Song, L.H. Shen, J. Xiao, Z.P. Gao, H.M. Gu, S.W. Zhang, Characterization of hematite oxygen carrier in chemical-looping combustion at high reduction temperature, J. Fuel Chem. Technol. 39 (8) (2011) 567-574.
45. L.S. Fan, Chemical looping system for fossil energy conversion, A John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2010.
46. T. Song, J. Wu, H. Zhang, L. Shen, Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal, Int. J. Greenh. Gas Con. 11 (2012) 326-336.
47. I.J. Moon, C.H. Rhee, D.J. Min, Reduction of hematite compacts by H2-CO gas mixtures, Steel Res. 59 (8) (1998) 302-306.
48. N. Towhidi, J. Szekely, Reductions kinetic of commercial grade low silica hematite pellets with CO-H2 mixture over temperature range 600-1234°C, Ironmak. Steelmark. 6 (1981) 237-249.
49. E.R. Monazam, R.W. Breault, R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chem. Eng. J. 242 (2014) 204-210.
50. M.M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC), Chem. Eng. Res. Des. 88 (2010) 1505-1514.
51. Y.C. Liu, Application of the Fe2TiO5 as oxygen carriers for chemical looping process using the syngas as a fuel, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2011.
52. A. Abad, J. Adánez, A. Cuadrat, F. García-Labiano, P. Gayán, L. F. de Diego, Kinetics of redox reactions of ilmenite for chemical-looping combustion, Chem. Eng. Sci. 66 (2011) 689-702.
53. H. Leiona, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson, The use of ilmenite as an oxygen carrier in chemical-looping combustion, Chem. Eng. Res. Des. 86 (2008) 1017-1026.
54. L.H. Shen, J.H. Wu, Z.P. Gao, J. Xiao, Experiments on chemical looping combustion of coal with a NiO based oxygen carrier, Combust. Flame 156 (3) (2009) 721-728.
55. L.H. Shen, J.H. Wu, Z.P. Gao, J. Xiao, Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in 10 kWth reactor, Combust. Flame 156 (7) (2009) 1377-1385.
56. K. Svoboda, A. Siewiorek, D. Baxter, J. Rogut, M. Pohorˇelý, Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures, Energy Convers. Manage. 49 (2008) 221-231.
57. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier, Ind. Eng. Chem. Res. 47 (2008) 9279-9287.
58. S.Y. Chuang, J.S. Dennis, A.N. Hayhurst, S.A. Scott, Development and performance of Cu-based oxygen carriers for chemical-looping combustion, Combust. Flame 154 (1-2) (2008) 109-121.
59. E.M. Eyring, G. Konya, J.S. Lighty, A.H. Sahir, A.F. Sarofim, K. Whitty, Chemical looping combustion with copper oxide as carrier and coal as fuel, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 66 (2) (2011) 1-13.
60. T. Mattisson, A. Lyngfelt, H. Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels, Int. J. Greenh. Gas Con. 3 (2009) 11-19.
61. P. Gayán, I. Adánez-Rubio, A. Abad, L. F. de Diego, F. García-Labiano, J. Adánez, Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process, Fuel 96 (2012) 226-238.
62. A. Abad, I. Adánez-Rubio, P. Gayán, F. García-Labiano, L. F. de Diego, J. Adánez, Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kWth continuously operating unit using a Cu-based oxygen-carrier, Int. J. Greenh. Gas Con. 6 (2012) 189-200.
63. E.R. Stobbe, B.A. de Boer, J.W. Geus, The reduction and oxidation behavior of manganese oxides, Catal. Today 47 (1999) 161-167.
64. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particle for chemical looping combustion, Chem. Eng. Sci. 62 (2007) 655-666.
65. A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, Chemical-looping with oxygen uncoupling using Mn/Mg-based oxygen carriers - Oxygen release and reactivity with methane, Fuel 90 (2011) 941-950.
66. W.M. Hsu, Materials characteristics of spinel nickel ferrite oxygen carrier and it’s selection of inert supports for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2012.
67. Y.H. Tseng, J.L. Ma, C.P. Chin, Y.L. Kuo, Y. Ku, Preparation of composite nickel - iron oxide as highly reactive oxygen carrier for chemical-looping combustion process, J. Taiwan Inst. Chem. Eng. 45 (2014) 174-179.
68. A. Steinfeld, Solar thermochemical production of hydrogen - a reviews, Solar Energy 78 (2005) 603-615
69. Y.L. Kuo, W.M. Hsu, P.C. Chiu, Y.H. Tseng, Y. Ku, Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process, Ceram. Int. 39 (2012) 5459-5465.
70. R. Siriwardane, H. Tian, T. Simonyi, J. Poston, Synergetic effects of mixed copper - iron oxides oxygen carriers in chemical looping combustion, Fuel 108 (2013) 319-333.
71. R. Siriwardane, H. Tian, J. Fisher, Production of pure hydrogen and synthesis gas with CueFe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming, Int. J. Hydrogen Energy 40 (2015) 1698-1708.
72. E.R. Monazam, R.W. Breault, H. Tian, R. Siriwardane, Reaction Kinetics of Mixed CuO−Fe2O3 with Methane as Oxygen Carriers for Chemical Looping Combustion, Ind. Eng. Chem. Res. 54 (2015) 11966-11974.
73. B. Wang, W. Wang, Q. Ma, J. Lu, H. Zhao, C. Zheng, In-depth investigation of chemical looping combustion of a Chinese bituminous coal with CuFe2O4 combined oxygen carrier, Energy Fuels 30 (2016) 2285-2294.
74. B. Wang, Y. Cao, J. Li, W. Wang, H. Zhao, C. Zheng, Migration and redistribution of sulfur species during chemical looping combustion of coal with CuFe2O4 combined oxygen carrier, Energy Fuels 30 (2016) 6499-8510.
75. S. Jiang, L. Shen, J. Wu, J. Yan, T. Song, The investigations of hematite-CuO oxygen carrier in chemical looping combustion, Chem. Eng. J. 317 (2017) 132-142.
76. S.T. Norberg, G. Azimi, S. Hull, H. Leion, In situ neutron powder diffraction study of the reaction M2O3 ↔ M3O4 ↔ MO, M = (Fe0.2Mn0.8): implications for chemical looping with oxygen uncoupling, CrystEngComm. 18 (2016) 5537-5546.
77. A. Lambert, C. Delquié, I. Clémençon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand, Synthesis and characterization of bimetallic Fe/Mn oxide for chemical looping combustion, Energy Procedia 1 (2009) 375-381.
78. G. Azimi, H. Leion, M. Rydén, T. Mattisson, A. Lyngfelt, Investigation of different Mn-Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU), Energy Fuels 27 (2013) 367-377.
79. M. Rydén, H. Leion, T. Mattisson, A. Lyngfelt, Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling, Appl. Energy 113 (2014) 1924-1932.
80. C. Linderholm, A. Lyngfelt, A. Cuadrat, E. Jerndal, Chemical-looping combustion of solid fuels – Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite, Fuel 102 (2012) 808-822.
81. M. Arjmand, H. Leion, A. Lyngfelt, T. Mattisson, Use of manganese ore in chemical-looping combustion (CLC) - Effect on steam gasification, Int. J. Greenh. Gas Con. 8 (2012) 56-60.
82. M. Liang, W. Kang, K. Xie, Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique, J. Energy Chem. 18 (2009) 110-113.
83. W.C. Huang, Feasibility evaluation of electric arc furnace dust as oxygen carrier for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2013.
84. J.J. Lee, C.I. Lin, H.K. Chen, Carbothermal reduction of zinc ferrite, Metall. Mater. Trans. B 32 (2000) 1033-1040.
85. X. Wang, Z. Chen, M. Hu, Y. Tian, X. Jin, S. Ma, T. Xu, Z. Hu, S. Liu, D. Guo, B. Xiao, Chemical looping combustion of biomass using metal ferrites as oxygen carriers, Chem. Eng. J. 312 (2017) 252-262.
86. E. Manova, T. Tsoncheva, C. Estournès, D. Paneva, K. Tenchev, I. Mitov, L. Petrov, Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition, Appl. Catal. A Gen. 300 (2006) 170-180.
87. J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, A. Abad, Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion, Ind. Eng. Chem. Res. 45 (2006) 2617-2625.
88. T. Mattisson, A. Järdnäs, A. Lyngfelt, Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion, Energy Fuels 17 (2003) 643-651.
89. Q. Zafar, T. Mattisson, B. Gevert, Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4, Energy Fuels 20 (2006) 34-44.
90. P.C. Chiu, Y. Ku, Y.L. Wu, H.C. Wu, Y.L. Kuo, Y.H. Tseng, Characterization and evaluation of prepared Fe2O3/Al2O3 oxygen carriers for chemical looping process, Aerosol Air Qual. Res. 14 (2014) 981-990.
91. B. Wang, H. Zhao, Y. Zheng, Z. Liu, R. Yan, C. Zheng, Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers, Fuel Process. Technol. 96 (2012) 104-115.
92. M. Johansson, T. Mattisson, A. Lyngfelt, Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion, Ind. Eng. Chem. Res. 43 (2004) 6978-6987.
93. J.A. Medrano, H.P. Hamers, G. Williams, M. van Sint Annaland, F. Gallucci, NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications, Appl. Energy 158 (2015) 86-96.
94. M. Arjmand, A.M. Azad, H. Leion, A. Lyngfelt, T. Mattisson, Prospects of Al2O3 and MgAl2O4-supported CuO oxygen carriers in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU), Energy Fuels 25 (2011) 5493-5502.
95. K.T. Jacob, C.B. Alcock, Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3, J. Am. Ceram. Soc. 58 (1975) 192-195.
96. M. Arjmand, M. Keller, H. Leion, T. Mattisson, A. Lyngfelt, Oxygen release and oxidation rates of MgAl2O4‑supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU), Energy Fuels 26 (2012) 6528-6539.
97. Y.L. Kuo, W.C. Huang, W.M. Hsu, Y.H. Tseng, Y. Ku, Use of spinel nickel aluminium ferrite as self-supported oxygen carrier for chemical looping hydrogen generation process, Aerosol Air Qual. Res. 15 (2015) 2700-2708.
98. Q. Zafar, T. Mattisson, B. Gevert, Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as support, Ind. Eng. Chem. Res. 44 (2005) 3485-3496.
99. H. Song, K. Shah, E. Doroodchi, T. Wall, Be. Moghtader, Reactivity of Al2O3- or SiO2‑supported Cu‑, Mn‑, and Co-based oxygen carriers for chemical looping air separation, Energy Fuels 28 (2014) 1284-1294.
100. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Master. Sci. 46 (2011) 855-874.
101. Y. Ku, Y.C. Liu, P.C. Chiu, Y.L. Kuo, Y.H. Tseng, Mechanism of Fe2TiO5 as oxygen carrier for chemical looping process and evaluation for hydrogen generation, Ceram. Int. 40 (2014) 4599-4605.
102. B.S. Kwak, N.K. Park, S.O. Ryu, J.I. Baek, H.J. Ryu, M. Kang, Improved reversible redox cycles on MTiOx (M = Fe, Co, Ni, and Cu) particles afforded by rapid and stable oxygen carrier capacity for use in chemical looping combustion of methane, Chem. Eng. J. 309 (2017) 617-627.
103. J.R. Kelly, I Denry, Stabilized zirconia as a structural ceramic: An overview, Dent. Mater. 24 (2008) 289-298.
104. M. Johansson, T. Mattisson, A. Lyngfelt, Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion, Chem. Eng. Res. Des. 84(9) (2006) 807-818.
105. U. F. Chinje, J.H.E. Jeffes, Effects of chemical composition of iron oxides on their rates of reduction: Part 1 Effect of trivalent metal oxides on reduction of hematite to lower iron oxides, Ironmak. Steelmak. 16 (1989) 90-95
106. R. Chaigneau, R.H. Heerema, The influence of specific impurities on the nucleation and growth of magnetite during reduction of artificially prepared hematite, Metall. Trans. B 22(1991) 503-511.
107. A.A. El-Geassy, Stepwise Reduction of CaO and/or to Magnetite Then Subsequently to MgO Doped-Fe2O3 compacts iron at 1173-1473K, ISIJ Int. 37 (1997) 844-853.
108. . K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, Chemical storage of hydrogen by modified iron oxides, J. Power sources 122 (2003) 111-121.
109. L. Liu, M.R. Zachariah, Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion, Energy Fuels 27 (2013) 4977-4983.
110. K.J. Anusavice, Philip’s Science of dental marterials, Eleventh Edition, Saunder Elsevier, U.S., 2007.
111. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale kirkendall effect, Sci. 304 (2004) 711-714.
112. Z. Yu, C. Li, Y. Fang, J. Huang, Z. Wang, Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier, Energy Fuels 26 (2012) 2505-2511.
113. J. Bao, Z. Li, N. Cai, Promoting the reduction reactivity of ilmenite by introducing foreign ions in chemical looping combustion, Ind. Eng. Chem. Res. 52 (2013) 6119-6128.
114. J. Bao, Z. Li, N. Cai, Reduction kinetics of foreign-ion-promoted ilmenite using carbon monoxide (CO) for chemical looping combustion, Ind. Eng. Chem. Res. 52 (2013) 10646-10655.
115. M. Muhler, R. Schlogl, A. Reller, G. Ertl, The nature of the active phase of the Fe/K-catalyst for dehydrogenation of ethylbenzene, Catal. Lett. 2 (1989) 201-210.
116. H.J. Ge, L.H Shen, H.M Gu, T. Song, S.X. Jiang, Combustion performance and sodium transformation of high-sodium ZhunDong coal during chemical looping combustion with hematite as oxygen carrier, Fuel 159 (2015) 107-117.
117. J.S. Huang, Feasibility evaluation of Na-modified Fe2O3/Al2O3 as oxygen carrier for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2016.
118. H.M. Gu, L.H. Shen, J. Xiao, S.W. Zhang, T. Song, D.Q. Chen, Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal, Combust. Flame 159 (2012) 2480-2490.
119. D.D. Miller, R. Siriwardane, J. Poston, Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite, Appl. Energy 146 (2015) 111-121.
120. J.C. Yu, Feasibility evaluation of Mg-modified Fe2O3/Al2O3 as oxygen carrier for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2015.
121. S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species, J. Catal. 228 (2004) 66-74.
122. J.C. Ryu, D.H. Lee, K.S. Kang, C.S. Park, J.W. Kim, Y.H. Kim, Effect of additives on redox behavior of iron oxide for chemical hydrogen storage, J. Ind. Eng. Chem. 14 (2008) 252-260.
123. K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, Chemical storage of hydrogen by modified iron oxides, J. Power sources 122 (2003) 111-121.
124. K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi, M. Matsukata, Hydrogen production via steam–iron reaction using iron oxide modified with very small amounts of palladium and zirconia, Appl. Catal. A-Gen. 288 (2005) 143-148.
125. M. Shimokawabe, R. Furuichi, T. Ishii, Influence of the preparation history of α-Fe2O3 on its reactivity for hydrogen reduction, Thermochim. Acta 28 (1979) 287-305.
126. K. Otsuka, C. Yamada, T. Kaburagi, S. Takenaka, Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles, Int. J. Hydrogen Energy 28 (2003) 335-342.
127. L. Qin, Z. Cheng, M. Guo, M. Xu, J.A. Fan, L.S. Fan, Impact of 1% lanthanum dopant on carbonaceous fuel redox reactions with an iron-based oxygen carrier in chemical looping processes, ACS Energy Lett. 2 (2017) 70-74.
128. M. Tian, C. Wang, L. Li, X. Wang, High performance of La-promoted Fe2O3/α-Al2O3 oxygen carrier for chemical looping combustion, AIChE J. (2017).
129. V.V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier, G.B. Marin, CeO2‑modified Fe2O3 for CO2 utilization via chemical looping, Ind. Eng. Chem. Res. 52 (2013) 8416-8426.
130. S. Sun, M. Zhao, L. Cai, S. Zhang, D. Zeng, R. Xiao, Performance of CeO2‑modified iron-based oxygen carrier in the chemical looping hydrogen generation process, Energy Fuels 29 (2015) 7612-7621.
131. C. Dueso, F. García-Labiano, J. Adánez, L. F. de Diego, P. Gayán, A. Abad, Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier, Fuel 88 (2009) 2357-2364.
132. A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson, The use of iron oxide as oxygen carrier in a chemical-looping reactor, Fuel 86 (2007) 1021-1035.
133. Y. Cao, B. Lia, H.Y. Zhao, C.W. Lin, S.P. Sit, W.P. Pan, Investigation of asphalt (bitumen)-fuelled chemical looping combustion using durable copper-based oxygen carrier, Energy Procedia, 4 (2011), pp. 457-464.
134. P.C. Chiu, Performance evaluation of Fe2O3/Al2O3 oxygen carrier for chemical looping process by moving bed fuel reactor, Ph.D. Thesis, National Taiwan University of Science and Technology, Taiwan, 2014.
135. F. Li, L. Fan, Clean coal conversion processes-progress and challenges, Energy Env. Sci. 1 (2008) 248-267.
136. K.S. Go, S.R. Son, S.D. Kim, Reaction kinetics of reduction and oxidation of metal oxide for hydrogen production, Int. J. Hydrogen Energy 33 (2008) 5986-5995.
137. C.Y. Wen, Y.H. Yu, A generalized method for predicting the minimum fluidization velocity, AIChE J. 12 (1996) 610-612.
138. P. Gayán, A. Cabello, F. García-Labiano, A. Abad, L.F. de Diego, J. Adánez, Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support, Int. J. Greenh. Gas Con. 14 (2013) 209-219.
139. E. Mooasvi-Khoonsari, P. Hudon, I.H. Jung, Coupled experimental and thermodynamic optimization of the Na2O-FeO-Fe2O3-Al2O3 System: Part 1. Phase diagram experiments, J. Am. Ceram. Soc. 99 (2) (2016) 705-714.
140. R.J. Lang, Ultrasonic atomization of liquids, J. Acoust. Soc. Am. 34 (1) (1962) 6-8.

無法下載圖示 全文公開日期 2022/06/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE