簡易檢索 / 詳目顯示

研究生: 張哲維
Che-wei Chang
論文名稱: 環氧樹脂工程性質與修補成效之研究
Study on Engineering Properties and Retrofitting Effects of Epoxy Resin
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 李釗
Chau Lee
黃然
Ran Huang
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 121
中文關鍵詞: 環氧樹脂田口實驗設計法修補成效
外文關鍵詞: epoxy resin, Taguchi experimental design method, retrofitting effects
相關次數: 點閱:288下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用三種不同主劑與硬化劑重量混合比例之環氧樹脂(主劑:硬化劑=1:1、2:1 和3:1),探討在不同曝露環境條件下,對環氧樹脂工程性質與修補成效之影響。
研究結果顯示:(1)在一般環境下,7天齡期後,三種環氧樹脂各項工程性質發展均趨於穩定,其中重量混合比2:1之環氧樹脂抗壓強度、劈裂強度與超音波波速皆為最高者,14天齡期達到84.36 MPa、21.22 MPa與2408 m/s,高於其他兩種重量混合比1.24~1.80倍、1.42~1.58倍與1.06~1.09倍。 (2)經溫濕度循環變化環境曝露後,三種環氧樹脂之各項工程性質均呈現衰減狀態,以重量混合比1:1最為明顯,其抗壓強度、抗彎強度與劈裂強度與一般環境比較,減達值達50.34~66.73 %。 (3)在酸鹼環境下,重量混合比1:1之環氧樹脂各工程性質均衰減,與一般環境比較之下,抗壓強度、抗彎強度與劈裂強度明顯衰減12.16 %、27.91 %與22.81 %;重量混合比3:1之環氧樹脂除熱傳導係數外,其抗壓強度、抗彎強度與劈裂強度經酸鹼環境曝露後平均增加1.21~1.45倍。 (4)重量混合比2:1之環氧樹脂修補成效最佳,在一般環境曝露下圍束強度為49.08 MPa與剪力強度為5.81 MPa;重量混合比3:1環氧樹脂在溫濕循環變化環境下之圍束強度與剪力強度衰減最多,分別比一般環境衰減9.76 %與58.28 %,顯示其修補成效容易受到溫濕度之影響。 (5)依田口實驗設計法探討環氧樹脂高溫性質,以S/N因子反應表及反應圖得到A因子(重量混合比例)為所探討的工程性質中影響程度最大者,並由變異數分析中得到其貢獻度在76.12~98.23 %之間,皆為三因子中最高者,顯示重量混合比例有顯著之影響性。


This study investigated the effects of different exposure conditions on the engineering properties and retrofitting performance of epoxy resin made of three different mix proportions of main agent and curing agent by weight (main agent: curing agent = 1:1, 2:1 and 3:1).
Research results show that: (1) Under the general environment, the development of each engineering property of epoxy resin tends to be stable after seven days. At age of 14 days, the epoxy resin with 2:1 mixing ratio by weight has the highest compressive strength, splitting tensile strength and ultrasonic pulse velocity of 84.36 MPa, 21.22 MPa and 2408 m/s, which are higher than those of the other two by 1.24 to 1.80, 1.42 to 1.58 and 1.06~1.09 times, respectively. (2) After exposure to the cyclic environmental changes of temperature and humidity, each engineering property of three epoxy resin becomes decaying, in which, especially, the epoxy resin with mixing ratio of 1:1 is the most significant one. Comparison with those under the general environment attenuation, its compressive, flexural and splitting tensile strengths are reduced by 50.34~66.73%. (3) Under the acid and alkaline environment, each engineering property of the 1:1 epoxy resin becomes decaying. Compared with those under general environment, its compressive, flexural and splitting tensile strengths are reduced by 12.16%, 22.81% and 27.91%, respectively. Except for thermal conductivity, the compressive, flexural and splitting tensile strengths of 3:1 epoxy resin are increased by 1.21~1.45 times to those under general environment. (4) Under the general environment, the retrofitting performance of 2:1 epoxy resin is the best with the compressive strength of 49.08 MPa and shear strength of 5.81 MPa. The compressive and shear strengths of 3:1 epoxy resin show the worst decaying by 9.76 and 58.28%, respectively, comparing with those under the general environment, indicating the retrofitting performance is easily affected by cyclic effects of temperature and humidity. (5) The analysis on the effects of high temperature on the engineering properties of epoxy resin with the Taguchi experimental design method shows that the factor A (mixing ratio by weight) is the most significant factor based on the figures of S/N (signal to noise) ratio and the contribution is between 76.12~98.23% by ANOVA results. Both result show that mixing ratio by weight is the most significant factor on the variations of engineering properties under different environment.

中文摘要 英文摘要 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1 修復補強材料 2.2 環氧樹脂 2.2.1 定義 2.2.2 發展過程 2.2.3 環氧樹脂種類 2.2.4 硬化劑種類 2.2.5 環氧樹脂反應機制與硬化特性 2.2.7 環氧樹脂之應用 2.3 補強修復用環氧樹脂 2.3.1裂縫灌注用環氧樹脂 2.3.2黏貼用環氧樹脂接著劑 2.4 曝露環境對環氧樹脂性質之影響 2.4.1 溫濕環境 2.4.2 高溫環境 2.4.3 黏結性能 2.5 田口實驗設計法 2.5.1 簡介 2.5.2 實驗設計流程 2.5.3 因子分類 2.5.4 直交表選擇與建構 2.5.5 資料分析 第三章 試驗計畫 3.1 試驗材料 3.1.1 環氧樹脂 3.1.2 拌和水 3.1.3 水泥 3.1.4 粗細粒料 3.1.5 碳纖維強化複合材料(CFRP) 3.2 試驗儀器與設備 3.2.1 抗壓試體模具 3.2.2 抗彎試體模具 3.2.3 劈裂試體模具 3.2.4 水泥砂漿拌合機 3.2.5 精密電子秤 3.2.6 動態共振頻率測定儀 3.2.7 超音波試驗儀 3.2.8萬能試驗機 3.2.9 熱傳導係數測定儀 3.2.10 試體研磨粉碎機 3.2.11 高溫爐 3.2.12 熱偶線 3.2.13 溫度資料擷取分析系統 3.2.14 硬度試驗計 3.2.15掃描式電子顯微鏡 3.2.16可程式恆溫恆濕試驗機 3.3 試驗配比與變數 3.3.1 不同重量混合比之環氧樹脂工程性質 3.3.2 不同環境下之環氧樹脂工程性質與修補成效 3.3.3 高溫性質 3.4 試驗項目與方法 3.4.1 環氧樹脂工程性質試驗 3.4.2 環氧樹脂修補成效試驗 3.5 高溫環境(田口實驗設計法) 3.5.1 控制因子與水準 3.5.2 選擇直交表與配置 第四章 試驗結果分析與討論 4.1 環氧樹脂硬固性質 4.1.1 抗壓強度 4.1.2 抗彎強度 4.1.3 劈裂強度 4.1.4 動態彈性模數與動態剪力模數 4.1.5 超音波波速 4.1.6 熱傳導係數 4.1.7 硬度值 4.1.8 微觀分析 4.2 圍束強度 4.2.1 不同重量混合比環氧樹脂之補強成效 4.2.2 不同溫濕變化環境對於補強成效之成效 4.3 剪力強度(黏結能力) 4.3.1 不同重量混合比之影響 4.3.2 不同溫濕變化環境之影響 4.4 環氧樹脂高溫性能影響因子分析 4.4.1 抗壓強度 4.4.2 動態彈性模數 4.4.3 超音波波速 4.4.4 熱傳導係數 4.4.5 硬度值 4.4.6 綜合討論 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

[1]「鋼筋混凝土建築物修復補強技術手冊」,鋼筋混凝土建築物修復補強技術研討會,內政部建築研究所,(1999)。
[2]中華民國結構工程技師公會全國聯合會 編著,「鋼筋混凝土結構修復補強參考手冊」,中華民國結構工程技師公會全國聯合會,(2008)。
[3]Bauer, R.S., “Epoxy Resin Chemistry II,” American Chemical Society, Washington D.C., pp247-266, 1983.
[4]Ellis, B. “Chemistry and Technology of Epoxy Resins,” Blackie Academic & Professional, New York, pp1-35, 1993.
[5]Lee, H.,and K. Neville, Hankbook of Epoxy Resins, Mc Graw-Hill, New York, 1966.
[6]May, I., and A. Clayton, “Epoxy Resins:Chemistry and Technology Second Edition,” Dekker, New York, 1987.
[7]王煦崴,「高溫下環氧樹脂塗佈鋼筋之握裹強度」,國立交通大學碩士論文,(2005)。
[8]福本修,「聚酰胺樹脂手冊」,中國石化出版社,北京,(1994)。
[9]宋致行,「環氧樹脂應用於木通樑構件損壞修護補強之研究」,國立成功大學碩士論文,(2003)。
[10]垣內弘 編著、賴耿陽 譯,「環氧樹脂應用實務」,復漢出版社,(1993)。
[11]徐國財、張立德 編著,「奈米複合材料」,五南圖書出版公司,台北,(2004)。
[12]楊子慧,「環氧樹脂/聚有機矽氧烷奈米複合材料之合成與性質研究」,國立清華大學碩士論文,(2007)。
[13]Schecher, L., J. Wynstra and R.P. Kurkjy, Journal of Ind. & Eng. Chemistry., 48, Let .94, 1956.
[14]廖永迪,「含矽氧烷及亞醯胺的環氧樹脂之製備及特性研究」,國立交通大學碩士論文,(1999)。
[15]Gillham, J.K., “Formation and properties of Network Polymeric materials,” Polymer Engineer and Science, Vol.19, No.10, pp.676, 1939.
[16]林明桐,「環氧樹脂室溫、高溫機械性能及其破裂形態學」,國立清華大學碩士論文,(1986)。
[17]馬振基 編著,「奈米材料科技原理與應用」,全華科技圖書公司,台北,(2003)。
[18]王春山,「環氧樹脂簡介與最近發展(四)」,化工技術,第三卷,第166頁,(1995)。
[19]ASTM C881-02, “Standard Specification for Epoxy-Resin-Base Bonding System for Concrete,” Annual book of ASTM standards, American Society for Testing and Materials, 2002.
[20]Wu, C. and W. Xu, “Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin,” Polymer, Vol. 48, No.18, pp.5440-5448, 2007.
[21]Krakovský, I., J. Hanuš, J. Pleštil, J. Baldrian and M. S. Sánchez, “Structure and swelling behaviour of epoxy networks based on α, ω-diamino terminated poly(oxypropylene) - block - poly(oxyethylene),” Polymer, Vol. 46, No.1, pp.109-119, 2005.
[22]Xiao, G.Z. and M.E.R. Shanahan, “Swelling of DGEBA/DDA epoxy resin during hygrothermal ageing,” Polymer, Vol. 39, No.14, pp.3253-3260, 1998.
[23]Pethrick, R.A., A.E. Hollins, L. McEwan, A. MacKinnon, D. Hayward, A.D. Cannon, D.S. Jenkins and T.P. McGrail, “Dielectric, mechanical and structural, and water absorption properties of a thermoplastic-modified epoxy resin: Poly(ether sulfone)-amine cured epoxy resin,” Macromolecules, Vol. 29, No.15, pp.5208-5214, 1996.
[24]Ding, Y., M. Liu, M. Wang, S. Li, W. Liu and B. Wang, “Contributions of the side groups to the characteristics of water absorption in cured epoxy resins,” Macromolecular Chemistry and Physics, Vol. 202, No.13, pp.2681-2685, 2001.
[25]Musto, P., G. Ragosta, G. Scarinzi, and L. Mascia, “Probing the molecular interactions in the diffusion of water through epoxy and epoxy-bismaleimide networks,” Journal of Polymer Science Part B:Polymer Physics, Vol. 40, No.1, pp.922-938, 2002.
[26]Liu, M., P. Wu, Y. Ding, G. Chen and S. Li, “Two-dimensional (2D) ATR-FTIR spectroscopic study on water diffusion in cured epoxy resins,” Macromolecules, Vol. 35, No.14, pp.5500-5507, 2002.
[27]Damian, C., M. Escoubes, and E. Espuche, “Gas and water transport properties of epoxy-amine networks:Influence of crosslink density,” Journal of Applied Polymer Science, Vol. 80, No.11, pp.2058-2066, 2001.
[28]Cotugno, S. , G. Mensitieri, P. Musto, and L. Sanguigno, “Molecular interactions in and transport properties of densely cross-linked networks:A time-resolved FT-IR spectroscopy investigation of the epoxy/H2O system,” Macromolecules, Vol. 38, No.3, pp.801-811, 2005.
[29]Zhou, J. and J.P. Lucas, “Hygrothermal effects of epoxy resin. Part I:The nature of water in epoxy,” Polymer, Vol. 40, No.20, pp.5505-5512, 1999.
[30]Musto, P., G. Ragosta, and L. Mascia, “Vibrational spectroscopy evidence for the dual nature of water sorbed into epoxy resins,” Chemistry of Materials, Vol. 12, No.5, pp.1331-1341, 2000.
[31]Al-Mandil, M.Y., H. S. Khalil, M. H. Baluch, and A. K. Azad, “Performance of Epoxy-Repaired concrete under Thermal Cycling,” Cement & Concrete Composites, Vol. 12, No.1, pp.47-52, 1990.
[32]Ramsay, B., “Steel plate bonding for concrete bridge strengthening,” Construction Repair, pp.14-16, 1993.
[33]Lin, T. and D. Kruger, “Engineering Properties of Epoxy Resins used as Concrete Adhesives,” ACI Materials Journal, Vol. 93, No.1, pp.26-35, 1996.
[34]Browning, C.E., C.E. Husman and J.M. Whitney., “Moisture Effects in Epoxy Matrix Composites,” Journal of Composite Materials, AFML-TR-77-41, 1987.
[35]張瑞元,「纖維布貼片與水泥混凝土黏結效果之研究」,國立中央大學碩士論文,(1997)。
[36]陳立,「剛性道面裂縫修補材料基本力學之研究」,國立中央大學碩士論文,(1994)。
[37]中科院航空研究所,「複材補強應用於橋樑修補之研究」,期末報告,(1998)。
[38]Lin, T.D., R.I. Zwiers, S.T. Shirley and R.G. Burg, “Pullout Tests of Epoxy Coated Bars at High Temperatures,” ACI Materials Journal, Vol. 85, No.6, pp.544-550, 1988.
[39]Miyano, Y., M. Nakada and M.K. McMurray, “Influence of Stress Ratio on Fatigue Behavior in The Transverse Direction of Unidirectional CFRPS,” Journal of Composite Materials, Vol. 29, No.14, pp.1808-1822, 1995.
[40]楊思澤 編著,「工業用黏著劑與施工」,高立圖書有限公司,(1998)。
[41]日本建築學會 編著,「建築材料用教材」,日本建築學會,(1998)。
[42]莊惟岩,「界面現象與接著在工業上的應用」,界面科學會誌,第8卷第四期,第37-46頁,(1995)。
[43]郭詩毅,「鋼板貼片補強用環氧樹脂受溫後黏結性質變化之研究」,國立台灣科技大學博士論文,(2004)。
[44]Swarmy, R.N., R. Jones and J.W. Bloxham, “Structural Behavior of Reinforced Concrete Beams Strengthened by Epoxy-Bonded Steel Plates,” The Structural Engineer, Vol. 65A, No.2, pp.59-68, 1987.
[45]高健章、鄭啟龍,「混凝土與補強鋼板間膠結界面受溫杜之影響」,結構工程,第12卷第四期,第100-109頁,(1997)。
[46]Chung, H.W., L.M. Lui, “Epoxy-Repair Concrete Joints,” ACI Materials Journal, Vol. 74, No.6, pp.264-267, 1977.
[47]Taguchi, Genichi, “Taguchi's quality engineering handbook,” John Wiley & Sons Inc, 2004.
[48]Roy, R.K., “Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement,” John Wiley & Sons Inc, 2001.
[49]李輝煌 編著,「田口方法:品質設計原理與實務」,高立圖書有限公司,(2008)。
[50]田耀遠,「田口法應用於混凝土配比設計及交互作用之研究」,國立台灣科技大學博士論文,(2004)。
[51]蘇朝墩 編著,「品質工程」,中華民國品質學會,(2002)。
[52]柯俊宏,「灰關聯分析結合田口參數設計運用於逆向工程點群資料處理之研究」,大葉大學碩士論文,(2003)。
[53]楊淳守,「應用田口方法之渦流風扇噪音研究」,國立高雄應用科技大學碩士論文,(2008)。
[54]周宗億,「射出/壓縮成型加工參數對成品機械性質之最適化設計」,國立中央大學碩士論文,(2005)。
[55]丁志華、戴寶通,「田口實驗設計法(I)」,奈米通訊,第8卷第三期,第7-11頁,(2001)。
[56]何奇鈺,「鋼結構用防火被覆材料之熱傳特性研究」,國立成功大學碩士論文,(2008)。

QR CODE